No d’ordre 2008 ISAL 0062
o ®
.MV%%,"SQ %I INRIA

These

Spontaneous Integration of Services

in Pervasive Environments

A présenter devant

L’ INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

Ecole Doctorale Informatique et Information pour la Société

pour 'obtention du

GRADE DE DOCTEUR
spécialité informatique

par

Noha IBRAHIM

Soutenue le 23 septembre 2008

Devant le jury composé de

Rapporteurs : Guy Bernard, Professeur, Telecom & Management
SudParis (France)
Satoh Ichiro, Professeur, National Institute of
Informatics (Japan)
Valérie Issarny, Directeur de recherche, = INRIA Arles (France)
Examinateur : Michel Riveill, Professeur, Polytech’Nice (France)
Directeurs : Frédéric Le Mouél, Maitre de conférences, INSA de Lyon (France)
Stéphane Ubéda, Professeur, INSA de Lyon (France)
Invitée : Christine Collet, Professeur, Grenoble INP - ENSIMAG
(France)

These effectuée au sein du Centre d’Innovation en Télécommunications et Intégration de Services (CITI) de 'INSA de Lyon,
équipe AMbient Architectures: Services Oriented, Networked, Efficient and Secure (AMAZONES) de P'INRIA Rhone-Alpes

Résumé

La prolifération croissante des dispositifs numériques sur le réseau ouvre la voie a une nouvelle
vision de l'informatique, la vision d’informatique diffuse. Toutefois, composer les services offerts
par ces dispositifs pour réaliser des applications, ou services, répondant aux attentes des usagers
reste un probléeme ouvert.

Cette these vise a proposer une solution a <« l'intégration spontanée de services dans les envi-
ronnements de 'informatique diffuse ». La solution proposée se base sur une architecture orientée
service et se decompose en trois fonctionnalités majeures: la transformation de service, la compo-
sition de services et 'adaptation de services. Un modele générique d’ < intergiciel d’intégration
de services > SIM est proposé, ainsi qu’une instanciation particuliere MySIM, est développée. Le
modele d’intergiciel SIM integre les services présents dans I’environnement a travers quatre fonc-
tionnalités: la transformation de descriptions de services propriétaires en un modele de référence,
la génération de toutes les compositions possibles des services au regard de leur compatibilité, la
sélection des compositions de services valide en vue de leur qualité de service et finalement la con-
struction qui instancie les services composites retenues et les publie dans ’environnement. MySIM
est une instanciation de SIM qui se distingue par une approche spontanée de I'intégration de ser-
vices. Les phases de génération, évaluation et construction de services sont réalisées de maniere
systématique et spontanée par 'intergiciel, sans intervention de 'utilisateur, en fonction des arrivées
et départs des services au sein de I’environnement.

Une implémentation de l'intergiciel MySIM basée sur la technologie OSGi a été proposée.
Cette implémentation permet de valider pratiquement la solution introduite dans cette these pour
résoudre les problemes de spontaneité liés aux environnements pervasifs, et d’en évaluer les perfor-
mances.

Abstract

If mobile computing brought challenges and constraints to distributed systems, it kept evolving
with the evolution of the technology. The mission of mobile computing is to allow users to access
any information using any device over any network at any time. When this access becomes to every
information using every device and over every network at every time, we can then say that mobile
computing has evolved to what we now call pervasive computing.

A computing infrastructure where “everything is a service” offers many new system and ap-
plication possibilities. Among the main challenges, however, is the issue of standardized way of
application development in such heterogeneous environments. The natural way of doing this is by
performing service composition, either by creating services and composing them according to re-
quirements, or adapting and reusing existing services in order to achieve a given task. In such open
environment the ability of services to adapt and be extended represents the primary driving force.
These two actions of composition and adaptation are only possible if services are implemented
and described in interoperable languages. For that reason, service transformation is a critical step
preceding any composition or adaptation action.

In this thesis, we focus our interest upon the intersection of two major domains, the service-
oriented architectures meeting the pervasive computing, and propose a novel solution to integrate
services in a pervasive environment. The main contributions of this thesis are threefold. They arise
from the lacks noticed in current service integration middleware for the pervasive environments. If
many middleware dealt with one or more of our service problems - transformation, composition,
adaptation - few proposed a unified vision for the service integration in pervasive environment,
a management of the functional and non-functional properties of services during the integration,
and especially, a spontaneous service integration that extends environments transparently with
functionalities.

We define the SIM model a Service Integration Middleware model adapted to service integration
middleware for pervasive environment. We give our middleware instantiation, MySIM and provide
the services functional and non-functional equivalence and composable relations to define service
transformation, service composition, and service adaptation. Based on these relations, spontaneous
service integration adapted to pervasiveness is explained. We developed a prototype as a proof of
concept that we tested over MyStudio environment. We think that our work on spontaneous service
integration with others related to intelligence, smartness and pro-activity lead to the development
of the Ambient Intelligence, the very likely probable evolution of pervasive computing.

Acknowledgments

I would like to thanks my jury members, Guy Bernard, Valérie Issarny, Ichiro Satoh, and Michel
Riveill for the time they spend over my thesis and their interesting feedbacks. I would like also to
thanks them for attending my phd defense.

I would like to thank my advisor, Frédéric Le Mouél, for supporting me over the years, and for
giving me so much freedom to explore and discover new areas of research. My other team members
have also been very supportive. Stéphane Frénot brought a more than useful perspective to the
thesis. Stéphane Ubéda as the director of the laboratory gave me opportunities to be involved
in the laboratory every day life. I would like also to thank Fabrice Valois for his friendship and
support.

I would like to thank my many friends and colleagues at Citi with whom I have had the pleasure
of working over the years. In particular, I would like to thank Amira Ben Hamida for her friendship
and support all along these years of thesis, for which I am very grateful.

Finally, I would like to thank my parents and family for giving me the motivation to finish this
thesis, and especially for their unconditional love.

On ne voit bien qu’avec le coeur, I'essentiel est invisible aux yeux.

Le petit prince

Contents

1

[1.1 From Mobile to Pervasive Computing] 1
(.2 From RPC Middleware to Service-Oriented Architecturesl 4
[1.3 Problem Statement: Service Integration| o000 7
[.4 Thesis Outhinel o 10

2 Overview of the Service Integration Middleware| 11
2.1 Component and Communication Based Middleware|. 12
[2.1.1 Component-Based Infrastructure| 12

2.1.2 Communication-Based Infrastructuref.o 000 13

2.2 Service Transtormation Middlewarel. L. 15
[2.2.1 Perv-ML: Pervasive Modelling Language| 15

[2.2.2 MIDAS: Model drlven methodology for the Development of web InformAtion |

| Dystems| . . . oL e e e e 17
[2.3 Service Composition Middleware] L oo 18
2.3.1 PERSE: PERvasive Skmantic-aware Middlewarel 19

[2.3.2 SeGSeC: Semantic Graph-based Service Composition|. 20

[2.3.3 Broker Approach tor Service Composition| 22

2.4 Service Adaptation Middleware| oo 24
2.4.1 MADAM: Mobility and ADaptation enAbling Middleware| 24

[2.4.2 CARISMA: Context-Aware Reflective mlddleware System for Mobile Appli- |

[cations. 26
2.4.3 SOCAM: Service-oriented Context-Aware Middlewarel 27

2.5 Classification and Discussionl Lo e 29

[3 Spontaneous Service Integration Middleware) 33
[3.1 A Unified Vision for Service Integration Middleware| 34
[3.1.1 A Service Integration Middleware Model: the SIM Model| 34

[3.1.2 An Instantiation of the SIM Model: the MySIM Middleware] 37

13.2 Service Functional and Non-Functional QoS Integration Relations|. 42
3.2.1 Formal Definitionsl 43

[3.2.2 Services Equivalence Relations|0 00, 47

[3.2.3 Services Composition Relations| 000 71

[3.3 Spontaneous Functional and Non-Functional QoS Service Integration| 78
[3.3.1 Spontaneity Versus Goal-Oriented Service Integration| 78

vii

[3.3.2 Spontaneous Service Composition| 82

13.3.3 Spontaneous Service Adaptation| L. 93

[4 MySIM Middleware Implementation| 103
4.1 The MySIM Middleware Architecture]o 103
4.2 MyStudio Use Case| 105
4.3 The MySIM Translator Service| v v v .. 110
4.4 The MySIM Generator Service|. 113
4.5 The MySIM QoS Service|. v v v v vttt e e 119
4.6 The MySIM Decision Service| 121
4.7 "The MySIM Builder Service| o v v vt i it 123
4.8 The MySIM Registry Service|o 127
4.9 MySIM Prototype Performance Evaluation| 131
5__Conclusion| 139
b1 Contributions| oL e 139
[5.1.1 Unified Vision for the Service Integration| 140

9.1.2 Functional and Non-Functional QoS Management of the Service Integration| . 140

[5.1.3 Spontaneous Service Integration|o 0oL 141

5.2 Perspectives| e 142
[5.2.1 Improvement of MySIM Middleware|o 142

[5.2.2 Integration Everywhere| Lo 144

15.2.3 From Pervasive Computing to Ambient Intelligence]. 146

List of Figures

[1.1 Service integration dimensions|.ot 8
2.1 Perv-ML MDAl o o e 16
2.2 MIDAS concepts| o 17
2.3 Semantic service middlewarelo 19
2.4 Modules in SeGSeCl 21
[2.5 Service composition and management layer|o 23
2.6 Architecture of Madaml 25
2.7 Architecture of Carismalo 27
2.8 Architecture of Socamlo 28
2.9 Service middleware classificationl oL 30
[3.1 Service Integration Middleware model| 35
[3.2 MySIM middleware following the SIM model| 38
[3.3 Service transtormation by MySIM middleware] 41
[3.4 Service composition by MySIM middleware|o 41
3.5 Service adaptation by MySIM| o oo 42
[3.6 Modules using the functional and non-functional aspects of a service| 43
B.7 Service Modell 44
[3.8 Abstract service relations descriptions|o oL 48
[3.9 operations specifications| 51
[3.10 1tertaces specifications| 53
[3.11 An ontology example|. 55
[3.12° A document ontology example| oo o oo 56
|3.13 Three services operations specifications|. 58
[3.14 Three services operations specifications|. 62
13.15 Two services operation specification| 72
[3.16 Combining compatible operations: opt & opy|o 73
[3.17 new resulting operation| Lo 73
[3.18 new resulting operation| 75
[3.19 new resulting operation non-functional QoS properties| 76
[3.20 Spontaneous service integration|o 79
[3.21 Services environment before and after spontaneous integration|. 80
13.22 T'wo storage services| e 81
13.23 Services achieving the technical spontaneous service composition| 83
[3.24 Spontaneous Composition runtime phases| 84

X

13.25 Three services operations specifications|. 89

[3.26 New getSnapShot operation| 91
13.27 New storage operation| 92
[3.28 Types translation| Lo 92
13.29 Services spontaneous adaptation for the application layer|] 94
13.30 Services taking part in the spontaneous service adaptation|. 95
|3.31 Three services operations specifications|. 97
13.32 Three services operations specifications|., 100
[3.33 Three services operations specifications|. 101
4.1 Distributed and pervasive environments| 104
4.2 Middlewate layer| 104
4.3 MyStudio environment|. e e e e e 106
4.4 Services non-functional QoS properties| oL 110
4.5 Translator Servicel 111
4.6 Mapping OSG1 service to SERVICE model|.o 000 . 112
A7 Generator Servicel. 113
4.8 All operations available in the environment| 114
4.9 Spontaneous Syntactic service composition|. L Lo oL L. 115
4.10 Semantic controll 116
|4.11 Spontaneous semantic service composition| 117
|4.12 Spontaneous semantic service composition| Lo 117
|4.13 Pervasive environment atter the spontaneous integration| 118
4.14 QoS Service| L e e e 119
[MI5 Decision Servicel. o o oo 122
416 Builder Servicel 124
|4.17 Creating the operation implementations of new composed service] 127
4.18 Registry Service|. L e e 128
4.19 Time and memory consumption of two operations composition| 131
[4.20 Size of bundles depending on the composition techniques|. 132
[4.21 Time and memory consumption for syntactic service matching| 133
|4.22 'Time execution for semantic service matchingl 133
[4.23 Time and memory consumption for QoS degree computing|. 134
|4.24 Time and memory consumption for services QoS sorting| 135
|4.25 Time execution for spontaneous service composition in MyStudio| 136
[5.1 Integration every where| 145
5.2 Vertical and horizontal integration| 145

5.3 Ambient Computing| L 146

List of Tables

11 List of Symbols| Xiv
12 List of operators over an element| L oL Xiv
13 List of operators over a set| xiv
|4.1 Integration techniques for services Sl and S2| 127

x1

Listings

4.1 MyStudio Service interfaces| 107
4.2 MyStudio Service properties|. e e e e 108
4.3 Spontaneous syntactic service composition| L. 114
4.4 Semantic controll L e e e e 115
4.5 Pellet reasonerl e 116
4.6 Spontaneous semantic service composition|o oL oL 116
4.7 Service equivalence relations|. Lo 118
4.8 Function isQoSCompatible for quantitative properties| 120
[4.9 Function isQoSCompatible for qualitative properties|. 120
4.10 QoS degree sorting| e e e e 121
.11 MySIM new service|. o e 122
[4.12 Property controll 123
|4.13 Service implementation and generation|. L. 125
|4.14 Service storage intertace new properties| 128
|4.15 Service storage interface new properties|o 128
|4.16 Service webcam interface new propertyl. Lo 129
[4.17 Service storage interface new properties| Lo 129
[4.18 Service Registry adaptation| oL 130

xiii

Symbol | Association
b alphabet
0 set of ontologies
N set of concepts across 0
S set of services
Ifc set of service interfaces
Op set of operations
Np set of non functional properties
Npon set of quantitative non functional properties
Npor set of qualitative non functional properties
In set of operation inputs
Out set of operation outputs
Cpt set of operation concepts
Impl set of operation implementations
Pr set of implementation functional properties
Protocol | set of services protocols
P set of all words over the alphabet X
€ empty word
a word or element over the alphabet, a € X%
T word or element over numbers, z € R

Table 1: List of Symbols

Symbol | Association
w(x) mean value of z, z € R
o(x) standard deviation of z, z € R
z-score(z) | standardization of z, x € R

n(z) z-score(z) normalized to [0,1], z € R
A logical and
\% logical or
= logical not

Table 2: List of operators over an element

Symbol | Association

A logical and
\% logical or
= logical not

< ...> | externally defined token

{...} | set (one of)
:

grouping

|S number of elements in the set S

S* repetition of the previous element zero or more times, |[S| > 0
St repetition one or more times, |S| > 1
S0-1 | repetition zero or one time, |S| = 0 V 1

Table 3: List of operators over a set

Xiv

Chapter 1

Introduction

1.1 From Mobile to Pervasive Computing| 1
(.2 From RPC Middleware to Service-Oriented Architectures| 4
[1.3 Problem Statement: Service Integration| 7
(L4 Thesis Outlinel o . e 10

The goal of this chapter is to highlight the challenges in computer system research raised by
pervasive computing and put the light on a new challenging problem, the integration problem within
distributed, mobile, and pervasive middleware. We begin by examining the mobile computing
domain, its characteristics, and constraints. Then, we explain the evolution from mobile computing
to pervasive computing. This evolution has affected not only networking and application layers,
but essentially the middleware layer, the glue of all software systems. We focus on service-oriented
architectures (SOA) and explain this middleware emerging approach that uses services as main
building blocks. Then, we delve deeper into one of the key research problem raised by pervasive
computing meeting the SOA: the service integration problem. Finally, we outline the contributions
of this thesis and detail the chapter contents.

1.1 From Mobile to Pervasive Computing

Hardly a day passes without some new evidence of the proliferation of portable computers in the
marketplace, or of the growing demand for wireless communication. Support for mobility has been
the focus of number of experimental systems, research and commercial products, and that since
several decades.

Although many basic principles of distributed system design [Mullender 1993
Coulouris et al. 2001] continued to apply, mobile computing brought more constraints to re-
search problems. Indeed the solution of many previously-encountered problems becomes more
complex and new problems, related to mobility, arise.

In his article, Satyanarayanan [Satyanarayanan 1996] listed four main constraints raised by

mobile computing:

CHAPTER 1. INTRODUCTION

e Resource-poor: mobile elements are resource-poor relative to static ones. Considerations of
weight, power, size, and ergonomics will cause a penalty in computational resources such as
processor speed, memory size, and disk capacity. These characteristics are closely related to
the embedded technologies of these elements. Even if mobile elements will improve as the
technology is improving, they will always be resource-poor relative to static elements.

e Hazardous mobility: mobile elements are more vulnerable to loss or damage. Their mobility
makes it difficult to consider their availability. Security problem are also more important for
mobile elements as their mobility lead them to many different places and situations, much
more complex than in a static position.

e Variable connectivity: mobile connectivity depends strongly on the mobile element’s geo-
graphical position. Some buildings may offer reliable, high-bandwidth wireless connectivity
while others may only offer low-bandwidth connectivity. Outdoors, a mobile element may
surely have to rely on a low-bandwidth wireless network with gaps in coverage.

e Finite energy resource: while battery technology will undoubtedly improve over time, the
problem of power consumption will not diminish. This concern must be considered at every
level, hardware or software, to be fully effective. The finite energy resource is a fact that
every developer of applications in mobile environments must deal with.

Due to these constraints, mobile computing rises several research problems listed by
[Satyanarayanan 2001]. Many of these problems of computer science deal with the challenges of
mobile computing:

e Mobile networking: protocols and techniques that allow mobile device users to move from
one network to another by supporting routing to and from mobile hosts. Mobile networking
includes Mobile IP [Bhagwat et al. 1996], ad hoc network protocols [Royer et al. 1999], and
techniques to improve TCP performance in wireless networks. This area of research tackles
the network layer.

e Mobile information access: in mobile environments, data and more generally informa-
tion should be able to “follow” the mobile host. Mobile information access includes
disconnected operation [Kistler et Satyanarayanan 1992], bandwidth-adaptive file access
[LBM et Satyanarayanan 1995], data migration and selective control of data consistency
[Terry et al. 1995].

e Adaptive protocols and applications: two levels of adaptation are required. Protocols have
to adapt to a different set of parameters in mobile wireless networks. They need to be
designed for adaptation to multiple parameters such as latency, burst error, disconnection
during hand-off, asymmetry of the link, location, and cost. The adaptation we are interested
in is more about applications’ adaptation [Satyanarayanan et al. 1994]. The support for
adaptative applications includes transcoding by proxies [Fox et al. 1996] and adaptative
resource management.

CHAPTER 1. INTRODUCTION

e QoS-aware system: with mobility, the flow path of information may change with each move,
hence delays will be surely impacted by mobility. This area of research tries to adapt appli-
cations, services, and all the functionalities provided to the clients to the ever changing world
of mobile computing.

e Location or position sensitivity: use of location, location sensing [Want et al. 1992], and
location-aware system behavior are some of many research challenges for the mobile comput-
ing domain. These challenges related to location and position are very often located in the
network layer.

If mobile computing brought challenges and constraints to distributed systems, it kept evolving
with the evolution of the technology. The mission of mobile computing is to allow users to access
any information using any device over any network at any time. When this access becomes to
every information using every device and over every network at every time, we can then say that
mobile computing has evolved to what we now call pervasive computing. This evolution from
mobile to pervasive has an impact on the research problems already existing, but also introduces
new challenges and problems.

One can not introduce pervasive computing without citing the famous Mark Weiser’ 1991 vision.
“The most profound technologies are those that disappear. They weave themselves into the fabric
of everyday life until they are indistinguishable from it” - so began Mark Weiser’s paper that
described his vision of ubiquitous computing, now also called pervasive computing. The essence of
that vision was the creation of environments saturated with computing and wireless communications
capability, yet gracefully integrated with users [Satyanarayanan 2001]. If many of these features
were unavailable in 1991 and more related to science fiction, many key building blocks needed
for this vision are now viable commercial technologies: wearable and hand-held computers, high
bandwidth wireless communication, location sensing mechanisms, and so on.

Pervasive computing is all about everywhere and anytime computing. It spreads intelligence
and connectivity to more or less everything. So conceptually, machines, clothing, tools, appliances,
homes and even the human body will be embedded with chips to connect to an infinite network of
other devices. This creates an environment where the connectivity of devices is embedded in such
a way that it is unobtrusive and always available. Information instantly accessible anywhere and
anytime is what pervasive computing is all about. It simplifies life by combining open standards-
based applications with everyday activities. It removes the complexity of new technologies, enables
us to be more efficient in our work and leaves us more leisure time and thus pervasive computing
is fast becoming a part of everyday life. The pervasive computing is a one to several interactions
between a user and several personal devices. The use is implicit, discrete, transparent, and usually
powerful.

A user is at the center of a pervasive environment. As users move, their computing environ-
ment moves with them, changes and extends as users meet, shrinks as users separate. Moreover,
users should be able to take full advantage of the local capabilities and resources within a given
environment, even with its ever changing topology.

The challenges already brought by mobile computing have more complex solutions in pervasive
environments. Satyanarayanan in [Satyanarayanan 2001] cites some of these challenges:

3

CHAPTER 1. INTRODUCTION

e Effective use of smart spaces: a space may be an enclosed area or a well-defined open area.
By embedding computing infrastructure to almost everything and everywhere, smart spaces
bring together the world of humans and the world of computing in a new unexplored way.
Smartness involves accurate sensing followed by intelligent control or action between the two
worlds, namely, machine and human.

e Invisibility: or the complete disappearance of pervasive computing technology from a user’s
consciousness; if a pervasive computing environment continuously meets user expectations
and rarely presents him with surprises, it allows him to interact almost at a subconscious
level. Automated techniques to dynamically reconfigure the network when required are also
crucial to realizing the pervasive computing vision.

e Localized scalability: future pervasive computing environments will likely face a proliferation
of users, applications, networked devices, and their interactions on a scale never experienced
before. As environmental smartness grows, so will the number of devices connected to the
environment and the intensity of human machine interactions. Scalability is thus a critical
problem in pervasive computing. The density of interactions has to fall off as one moves away.

Undoubtedly, research in the pervasive computing field has considerably advanced. At the
networking level, for example, wireless communication is already possible through technologies like
Bluetooth, Wi-Fi, and Zigbee. Mobility and ad hoc networking protocols have also been developed,
like Mobile IP, GPRS, UPnP, and Zeroconf. At an application level, when considering the context-
awareness of applications, undoubtedly some efforts have been made in specific application domains.
As examples, we can cite several domains such as home automation, health care, learning and
multimedia. The task of building pervasive computing applications can be too tedious if performed
from scratch. In other words, the developer will need to deal with low level networking protocols to
high level applications context awareness. This, of course, deviates the attention of the developers
to tasks that are not the purpose of the application. Instead, they should only concentrate on the
application logic, that is, the tasks the application must perform. This is why we are interested
in middleware for pervasive computing. In the next section we define what is a middleware and
introduce the most recent and emergent middleware approach, the service-oriented architecture.

1.2 From RPC Middleware to Service-Oriented Architectures

Middleware are enabling technologies for the development, execution and interaction of applica-
tions. These software layers are standing between the operating systems and applications. They
have evolved from simple beginnings - hiding network details from applications - into sophisti-
cated systems that handle many important functionalities for distributed applications - providing
support for distribution, heterogeneity and mobility. The evolution of middleware has been in-
fluenced by numerous developments and standards efforts. Various middleware paradigms were
defined. We cite the Remote Procedure Call (RPC) middleware [Myerson 2002], the Message Ori-
ented Middleware (MOM) middleware [Gomolski 1997], the Object Request Broker (ORB) mid-
dleware [Puder et al. 2005], and the Service-Oriented Architectures (SOA) middleware.

4

CHAPTER 1. INTRODUCTION

The term middleware first appeared in the late 1980s to describe network connection manage-
ment software, but did not come into widespread use until the mid 1990s, when network technology
had achieved sufficient penetration and visibility. By that time, middleware had evolved into a much
richer set of paradigms and services, offered to build distributed applications more easily and in a
more manageable way.

The term middleware was associated with relational databases for many practitioners in the
business world through the early 1990s. By the mid-1990s this was no longer the case. Concepts
similar to today’s middleware previously went under the names of network operating systems, dis-
tributed operating systems and distributed computing environments. Systems such as Apollo’s
Network Computing Architecture (NCA), Sun’s RPC standard, and the Open Software Founda-
tion’s Distributed Computing Environment (DCE) are all examples of successful RPC-oriented
middleware that has been used for significant production applications.

At the same time these systems were being produced in the 1980s and early 1990s, significant
research was occurring in the area of distributed objects. Distributed objects represented the
confluence of two key areas of information technology: distributed systems and object-oriented
design and programming. As a result of research on these and other distributed object systems,
Common Object Request Broker Architecture (CORBA) was created.

The CORBA system is built on top of ORB, which encompasses the entire communication
infrastructure necessary to identify and locate objects, handle connection management, and deliver
data. At the same time, a specific class of middleware, MOM, that operates on the principles of
message passing or message queuing appeared.

The MOM middleware unlike RPC and object-orientation is an asynchronous form of commu-
nication, i.e. the sender does not block waiting for the recipient to participate in the exchange.
While the evolution of distributed objects in the 1990s was marked by significant efforts to establish
standards such as CORBA, the evolution of messaging oriented middleware was practically devoid
of standards efforts.

In the late 1990s, the growing popularity of Java, the explosive growth of the World Wide
Web (WWW), and lessons learned from CORBA and MOM were all combined to form the Java 2
Enterprise Edition (J2EE) specification, a comprehensive component middleware platform. J2EE
provides support for numerous application types, including distributed objects, components, web-
based applications, and messaging systems. Throughout the development of CORBA, J2EE, and
proprietary messaging systems, Microsoft was busy developing its DCOM distributed objects sys-
tem.

In 1999 and 2000, the Web’s influence on middleware started to become readily apparent with
the publication of the initial version of Simple Object Access Protocol (SOAP) [Walsh 2002]. Ini-
tially dubbed SOAP was the result of trying to create a system-agnostic protocol that could be used
over the Web and yet still interface easily to non-SOAP middleware, including CORBA, DCOM,
J2EE, and messaging middleware systems. Given the 1990s “middleware contests” between J2EE,
CORBA, and DCOM, and between RPC and message passing, the unified support for SOAP
was indeed groundbreaking. At the time, it seemed that SOAP, Web Services [Iverson 2004] and
Service-Oriented Computing in general might finally provide the basis for broad industry agreement

5

CHAPTER 1. INTRODUCTION

on middleware standards.

The term service-oriented architecture (SOA) emerged to describe the approach of building
loosely coupled distributed systems with minimal shared understanding among system compo-
nents. The main building blocks in SOA are services. Services are self-describing, open compo-
nents that support rapid, low-cost development and deployment of distributed applications. A
Service-Oriented Architecture (SOA) is a form of distributed system architecture that is typically
characterized by the following properties [Milanovic 20006]:

e Logical view: the service is an abstracted, logical view of actual programs, databases, business
processes, and so on, defined in terms of what it provides.

e Message orientation: the service is formally defined in terms of the messages exchanged
between providers and requesters and not the properties of these latter themselves. The
internal structure including features such as implementation language, process structure and
even database structure, are deliberately abstracted away in the SOA: using the SOA one
does not and should not need to know how a provider implements a service.

e Description orientation: a service is described by machine processable meta-data. The de-
scription supports the public nature of the SOA: only those details that are exposed to the
public and important for the use of the service should be included in the description.

e Granularity: services tend to use a small number of operations with relatively large and
complex messages.

e Network orientation: services tend to be oriented toward use over a network, though this is
not an absolute requirement.

e Platform neutral: messages are sent in a platform-neutral, standardized format delivered
through the interfaces. XML is usually the most obvious and used format that meets this
constraint.

A computing infrastructure where “everything is a service” offers many new system and ap-
plication possibilities. Among the main challenges, however, is the issue of standardized way of
application development in such heterogeneous environment. The natural way of doing this is by
performing service composition, either by creating services and composing them according to re-
quirements, or adapting and reusing existing services in order to achieve a given task. In such open
environment the ability of services to adapt and be extended represents the primary driving force.
These two actions of composition and adaptation are only possible if services are implemented
and described in interoperable languages. For that reason, service transformation is a critical step

preceding any composition or adaptation action.

CHAPTER 1. INTRODUCTION

1.3 Problem Statement: Service Integration

The challenge we are interested in arises from the intersection of the SOA and the pervasive com-
puting. In such open environments the ability of services to integrate into their new environment
represents the new challenges of pervasive computing for the SOA. Though pervasive computing el-
ements are already deployed around users, integrating them into a single platform is still a research
problem.

One can ask why integrating services? why not rather just use them? The primary driving force
of a pervasive environment is to provide a seamless environment of functionalities to the users. If
such computing environment does not present means to take advantages of the available services,
it will fail to provide what Weiser defined as the disappearing technologies. To let the technology
disappears from user and application perspective, the computing environment need to integrate all
the services that come and go so that they can operate correctly and be accessed transparently
by users. Whenever something new appears in an environment the natural action to do is to try
and integrate it into its new environment, so that it can fit perfectly and provide the best of what
it can do. Whenever something disappears from the environment the natural action to do is to
mask this disappearance by adapting the environment to this loss. This applies to domains such
as computing but also to domains far from it such as in biology or social behaviors.

As the number and heterogeneity of devices and applications increases, integration becomes
more complex. Indeed the localized scalability makes it possible to have numerous devices available
at the same time in a same smart space. For example, servers must handle thousands of concurrent
client connections, and the influx of pervasive devices would quickly approach the host’s capacities.
The invisibility introduced by pervasive environments requires from the integration to preserve this
invisibility by providing a seamless integrated environment to users. The new provided functional-
ities must disappear into the smart spaces and just be available to respond to the users needs. We
state our problem and give a definition to the new identified challenge which is the subject of this
thesis: service integration in pervasive environment.

The first problem we are faced with when investigating service integration is the lack of a valid
definition. We begin by giving dictionary definitions for the employed terms followed by definitions
provided by the literature.

DEFINITION 1 — Integration

Integration is an act or instance of combining into an integral whole.

In pervasive SOA, the act of combining into an integral whole, concerns the services available
in the surroundings as they are the building blocks of such environment. The integration of these
services is essential for the existence, expansion, and development of all the applications within the
pervasive environments [[shikawa et al. 2005]. To define the service integration, we provide answer
to these three questions: What to integrate in a service? How to integrate? and When to integrate?
The answers are given figure [1.1

CHAPTER 1. INTRODUCTION

DEFINITION 2 — Service Integration
We define a service integration as the combination of three functional aspects: service
transformation, service composition, and service adaptation, taking place at run-time
and concerning the computational and behavioral parts of services (cf. figure .

When
L]
e @ & @
- /ﬁ\{\\ ,\\@’ \'\"\
& & & é
@ NS P <
[= c
2|8
. . ® | ®
Computation/Behavior = E § How
sl e |5
What 2% |«
DataContent ol @
E| =
o
(&}
Communication

Figure 1.1: Service integration dimensions
|

A service integration is defined as a service transformation, a service composition, or a service
adaptation. It can also be a combinations of these three techniques.

DEFINITION 3 — Transformation
Transformation is the process or result of changing from one appearance, state, or phase
to another.

Nowadays creating enterprise software comes with a lot of compatibility issues. There are
simply too many platforms, and too many conflicting implementation requirements, to ever agree
on a single choice in any of these fields. Transformation from one service model to another in order
to cooperate and integrate is more than essential in pervasive environments. For that an integration
to be successful in pervasive environments, it has to be able to transform the diverse services model
into models that can interact together, to compose services together [dCastro et al. 2006], and to
adapt them or the resulting composition to the ever changing environment. The transformation
model-driven development key challenge is in transforming higher-level models into platform-specific
models, that can be used to generate implementation level models. Transforming a model into
another model means, that a source model is transformed into a target model based on some
transformation rules. Different methods can be used for defining the transformation rules. As for the
adaptation we limit our “MDA” interest to middleware that propose mechanisms of transformation
and translation between service technology model |[dCastro et al. 2007].

8

CHAPTER 1. INTRODUCTION

DEFINITION 4 — Composition
Composition is a process of binding two or more entities into a new one. Composition
focuses on the global interactions among all participants. Sometimes, term choreogra-
phy is used instead.

Service composition is defined as the act of linking services together to form or provide some-
thing new. This term has been widely used and studied in SOA such as Web services. Composing
services in a pervasive environment is all about providing a way to make these services commu-
nicate together and create a new functionality or service, unable to exist without the interaction
of the whole. Service composition problem has been mainly described as a language description
problem. Languages, such as XML, OWL-S [Coalition 2003], and BPEL4WS [Juric et al. 2006] are
commonly employed to describe the composition between different services. These languages need
to be adapted and extended to the pervasive environment. If some research area are concerned
about these extensions and adaptations, others propose new languages for describing composition
in pervasive environment, by filling the gap left by the first ones.

DEFINITION 5 — Adaptation

Adaptation is the process of making adjustments to suit the environment and to adjust
to different conditions.

Unlike the composition, adaptation granularity is defined over one service, that can be itself the
result of a composition. Adaptation is very important in dynamic and ever changing environments
as it allows to integrate certain services in their new inhabitance. The adaptation problem is one of
the biggest challenges for software engineering [Floch 2006), Le Mouél et al. 2002]. This is particu-
larly the case since mobile and pervasive computing have turned adaptation from the slow process
of software evolution into a highly dynamic run-time procedure that needs to occur as devices and
applications move from network to network. We distinguish several layers where adaptation can
be applied: the resource adaptation, the service execution and deployment adaptation, the service
composition adaptation, and so on. In this thesis, we are interested in adaptation as a technique
of integration. Others such as [Frei 2005] saw also in adaptation a way to allow the architecture
and the application components to be extended as required. The premise is to extend the applica-
tion transparently with new functionality. We limit our studies to the services adaptation defined
as a reconfiguration and re-parametrization for a good execution in pervasive environments. The
extension in functionality as defined by [Frei 2005] is the result of the service composition defined
above.

Many research fields are interested in one of these development trends, but few have tried to
combine all these functionalities into one middleware. Current middleware offer mechanisms for
the composition and adaptation, or algorithms for the transformation of models, but very few
middleware considered the unified view of the service integration as we define it.

CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

This thesis is about service integration in pervasive environments. First, it proposes a survey of
available service integration middleware in pervasive environments: service transformation middle-
ware, service composition middleware, and service adaptation middleware. Based on this survey,
we highlight three main lacks for service integration in pervasive environments: the unified vision
for the integration, the functional and non-functional QoS service integration management, and the
spontaneity of the integration in pervasive environments. Then, we present our service integration
middleware model and propose our own middleware that responds to the three identified lacks.
A prototype implementation is provided as a proof of concept. Finally, we conclude and open
perspectives for this work.

e Chapter 2 provides an overview of the field related to service integration and brings out
the drawbacks and limitations of currently existing solutions. First, we depict middleware
that do the service transformation, service adaptation, and service composition. Then, we
classify these middleware under three requirements that we identify to be essential in pervasive
environments.

e Chapter 3 exposes the contribution of this thesis. A first section presents a unified service
integration model, the SIM model with our instantiation middleware, the MySIM middleware.
The second section introduces and formalizes our generic service model with its relations
(equivalence and composition). The third section depicts our spontaneous service integration
based on the relations introduced earlier.

e Chapter 4 presents the implementations of our middleware. First, we depict the overall
middleware architecture developed under OSGi. Then, we explain the implementations of
the middleware services based on a provided use case (The MyStudio use case). Finally the
last section details the evaluation of our middleware implementation.

e Chapter 5 concludes the thesis and presents the major perspectives of this work.

10

Chapter 2

Overview of the Service Integration
Middleware

2.1 Component and Communication Based Middleware|. 12
[2.1.1 Component-Based Infrastructuref 12

2.1.2 Communication-Based Infrastructurel. 13

2.2 __Service Transformation Middlewaref.o L. 15
2.2.1 Perv-ML: Pervasive Modelling Language]. 15

2.2.2 MIDAS: Model drlven methodology for the Development of web InformA- |

| tion Systems| Lo 17
2.3 Service Composition Middleware]o o000 18
2.3.1 PERSE: PERvasive SEmantic-aware Middlewarel 19

2.3.2 SeGSeC: Semantic Graph-based Service Composition|. 20

[2.3.3 Broker Approach for Service Composition| 22

2.4 Service Adaptation Middleware| L Lo 24
2.4.1 MADAM: Mobility and ADaptation enAbling Middleware| 24

2.4.2 CARISMA: Context-Aware Reflective mlddleware System tor Mobile Ap- |

| plications| 26
SOCAM: S -) -Aware Middleward 27

2.5 Classification and Discussionl L o 29

After, a brief description of the existing integration middleware - component and communi-
cation based - we survey in this chapter research efforts investigating service based integration
middleware platforms for pervasive computing. First, existing research efforts investigating service
transformation middleware, such as Perv-ML [Munoz et al. 2004] and MIDAS |[dCastro et al. 2006]
are presented in Section 2.2. Then, service composition middleware that focus on issues re-
lated with the dynamic composition of pervasive applications such as PERSE [Mokhtar 2007] and
SeGSeC [Fujii et Suda 2005] are surveyed in Section 2.3. Finally, we discuss service adaptation

middleware that provide solutions for dealing with middleware adaptability in pervasive computing
environments, such as CARISMA [Capra et al. 2003] and Madam [Floch 2006] in Section 2.4 and

11

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

provide an overall discussion and classification in Section 2.5. For conciseness, we choose only two
or three systems for each category of the presented middleware. In section 3.1 other middleware
are referred to while presenting our own model of Service Integration Middleware.

2.1 Component and Communication Based Middleware

Even if we are interested in this thesis in the SOA, many existing middleware deal with the integra-
tion of functionalities modeled in a different way than services. We distinguish the component-based
infrastructure and the communication-based infrastructure. If component infrastructure derives
from the object concept and is on the way to be replaced by the service oriented infrastructure,
many current systems [Pellegrini et Riveill 2003] still use this specific infrastructure. Other mid-
dleware are more communication based and do not rely on a predefined infrastructure but propose
infrastructures for communication rather than infrastructures for functionalities modeling.

2.1.1 Component-Based Infrastructure

A largely widespread approach is to provide the various functionalities offered by devices through
elementary components. These components are very often used to carry out a task or a particular
activity. In a component-based infrastructure, components can only interact with their environment
through operations at identified access points called interfaces which can be of two main sorts:
server (provided) and client (required). Some bindings must be established between components
(more precisely between their interfaces) so that they can interact. Bindings are communication
paths than can be local, distributed, or secured. Component interfaces are kept separate from
implementations, and bindings are exteriorized from components so as to support flexibility.

Systems such as Gala [Chetan et al. 2005], Aura [Garlan et al. 2002], and
Pcom [Becker et al. 2004] built their infrastructures upon the component model. Middle-
wares, such as Fractal [Bruneton 2004], used the component model to represent their provided
functionalities. We briefly introduce these systems and highlight their component-based infras-
tructure. Mobile Gaia [Chetan et al. 2005] is a component-based middleware that integrates
resources of various devices. The notion of ad-hoc pervasive computing in Gaia is a cluster of
personal devices that can communicate and share resources among each other. The cluster is
referred to as a personal active space. The user can program this cluster through a common
interface. Mobile Gaia role is to provide services that discover devices that form the personal
space, maintain the composition of the cluster, share resources among devices in the cluster and
facilitate communication. It also provides an application framework to develop applications for the
device collection. The application framework decomposes the application into smaller components
that can run on different devices in this collection. The Gaia system [Roman et Campbell 2003]
technology model is implemented as components. The deployment framework forms a container for
these components. Each component in Mobile Gaia has its own life cycle and can be dynamically
managed regardless of it model and location.

Aura |Garlan et al. 2002] provides user with an invisible halo of computing and information
services that persists regardless of location. A personal Aura acts as a proxy for the mobile user

12

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

it represents. Aura aim is to allow users to execute their tasks regardless their location, and Aura
deals more with adaptation, replacement of services, rather than with composition and services’
integration. Project Aura provides several pervasive applications adapted to both homes and offices.
In Aura, user task is modeled as abstract components. Their implementations consist in wrapping
existing services or applications to conform Aura API. The user intent, the abstract services and
applications are described using XML-based markup formats. Assumption of common vocabulary
tags and their corresponding interpretations is made.

Pcom [Becker et al. 2004], a component system for pervasive computing is a light-weight com-
ponent system that offers application programmers a high-level programming abstraction which
captures the dependencies between components using contracts. An application is modeled as a
tree of components and their dependencies where the root component identifies the application.
Components are unit of composition with contractually specified interfaces and explicit context de-
pendencies. Pcom technology model is also component-based. Components are atomic with respect
to their distribution but can rely on local or remote components, resulting in a distributed appli-
cation architecture. Pcom’s components enclose contracts that describe their offered functionality
and requirements regarding the platform and other components.

Fractal [Bruneton 2004] is a general-purpose software composition framework that supports
component-based programming, including both: components (type) definition and configuration
(instantiation), and runtime management including dynamic reconfiguration. The Fractal specifi-
cation defines the component model and the Application Programming Interface (API), i.e. the
Fractal programming model. The Fractal component model provides a homogeneous vision of
software systems structure with a few but well defined concepts and exhibits distinguishing fea-
tures such as recursion with sharing and reflection [Bruneton et al. 2002]. These features allow:
A uniform management of both so-called business and technical components, a uniform manage-
ment of resources (data, caches, pools, protocols, connections), activities (threads, transactions,
processes) and domains (security, persistence), and finally a possible component-based approach
throughout the software life-cycle: development, deployment, and production (runtime manage-
ment). [Hoareau et Mahéo 2006] presents a method to make Fractal-based application ubiquitous,
that is, to allow the services implemented by the application to be invoked on more than one host.
This is mainly achieved thanks to a distribution scheme of composite components that can be
duplicated on several hosts. The introduction of active interfaces to the model allows the appli-
cation to perform in a degraded mode when disconnections occur. Some simple mechanisms have
also been described to show how ubiquitous Fractal components can be tuned regarding network
disconnections and how bindings are automatically reconfigured when network failures occur.

2.1.2 Communication-Based Infrastructure

Another approach consists in using functionalities that are more independent from each other
and that carry out their integration and their communication in a generic way. A key objective
should be to design the infrastructure for integration and evolution, and not to try and achieve a
stable, definitive system. A communication-based infrastructure should be flexible enough to easily
integrate heterogeneous devices but also to make it possible for these devices to evolve and for

13

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

new devices to appear. Some projects such as Oxygen [MIT. Project Oxygen 2007] adopted this
kind of infrastructure, other technologies such as Multi-Agent Models, Peer to Peer computing, and
Grid computing rely on a communication-based infrastructure as a support to offer an integrated
environment for users and applications.

Project Oxygen |[MIT. Project Oxygen 2007] enables pervasive, human-centered computing
through a combination of specific user and system technologies. Oxygen aims to enable perva-
sive, unobtrusive computing. To permit this, Oxygenated applications adapt their behavior ac-
cording to the resources available in their environment. Oxygen technology models three layers,
devices, networks and softwares. Project oxygen technology model is typically a communication
based infrastructure. Applications developed under the Oxygen project, are written in a special
communication-oriented language and middleware. The language manipulates at a high level of
abstraction, components such as nodes, edges, messages, and actions. Nodes are just about any-
thing that can be named and communicated via sockets. An edge is a directed connection between
nodes. A message is an entity that flows along an edge. Actions make up the final component of
the language. An action consists of a trigger and a consequence. There is a middleware system
that executes the language.

Multi-Agent Models offer a communication based infrastructure for systems in pervasive en-
vironments. Agents are autonomous entities that perceive their environment and decide on their
action according to their knowledge and goals. A multi-agent system is a distributed system of
agents, which interact and cooperate in order to achieve global tasks. Agents technology is charac-
terized by its language, negotiation and cooperation, personal and social behavior and intelligence.
Agents are very often used for managing and integrating other technologies, such as component
or services. Agents do not integrate but very often communicate and interact in order to achieve
a specific goal, that can be an integration problem. Multi-agent systems enable complex interac-
tions between entities such as flexible compositions [Vallée et al. 2007], using high level semantic
languages. This feature seems essential in environments dealing with various, heterogeneous in-
formation from physical sensors, services or users preferences. Integration of such data is only
possible at a higher level where all kind of information (about services context, etc.) is expressed
semantically. In a multi-agent, autonomous entities with limited capabilities coordinate in order
to achieve complex tasks. Emergent coordination and flexible organization patterns enable groups
of agents to create and reconfigure application dynamically depending on conditions. Such pat-
terns seem well adapted to dynamic integration of elementary functionalities in an open, dynamic
environment [Vallée et al. 2005].

Peer-to-peer (P2P) computing covers a wide range of infrastructures, technologies and applica-
tions that share a single characteristic: they are designed to create networked applications in which
every node (or deployed system) is in some sense equivalent to all others, and application func-
tionality is created by potentially arbitrary interconnection between these peers. The consequent
absence of the need for centralized server components to manage P2P systems makes them highly
attractive in terms of robustness against failure, ease of deployment, scalability and maintenance.
This communication infrastructure allows systems to integrate different technologies in pervasive
environments [Frénot et al. 2003]. Indeed, it provides a connectivity to all the entities available

14

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

on the devices. Grid computing is the high-performance computing infrastructure for supporting
large-scale distributed scientific endeavor that has recently gained heightened and sustained interest
from several communities. The Grid thus refers to an infrastructure that enables the integrated,
collaborative use of high-end computers, networks, databases, and scientific instruments owned and
managed by multiple organizations. The integration concept is more related to the integration of
multiple independent computing clusters, in order to work together.

The communication-based infrastructures offer more a way of communication and interaction
rather than a technology model for integration. This infrastructure is not really oriented to model a
specific technology but rather to allow a better interaction between entities and devices populating
the pervasive environments.

We adopt the SOA and investigate the service integration middleware in pervasive environments.
We decompose these middleware into three categories: service transformation, service composition,
and service adaptation. After a brief description of the major middleware of these domains, we give
a classification that highlights the lacks in service integration middleware for the pervasive. We
need to point out that we deliberately chose for conciseness not to consider the service integration
problem outside the frame of pervasiveness. Many service transformation, composition, and adap-
tation middleware were designed and developed for distributed or mobile computing. The surveyed
middleware are those respecting the requirements of pervasiveness.

2.2 Service Transformation Middleware

Service transformation middleware tackle the problem of heterogeneity brought by pervasiveness.
If Web services technology provide seamless and automatic connections from one software appli-
cation to another using standard protocols such as SOAP, WSDL, and UDDI, to discover and call
a method in a software application — regardless of location or platform, these technologies fail to
address problems such as management and composition for services other than Web services from
early stage conception to system development process. Service transformation middleware propose
to transform the different service technologies available in the vicinity into one common model to
enable service interaction and communication. The area that tackles this problem is the Model-
Driven Development [Mukerji et Miller 2003]. It proposes a software development methodology in
which software are developed not by writing code directly in implementation languages, but by con-
structing high level models that can be transformed into code by automated transformation engines
and code generators. The slogan of MDD is “Model one, generate anywhere”. The two middleware
depicted in this section, Perv-ML [Munoz et al. 2004] and MIDAS [dCastro et al. 2006], repose on
MDD principles.

2.2.1 Perv-ML: Pervasive Modelling Language

Pervasive Modelling Language (Perv-ML) [Munoz et al. 2004] is a language with the aim of pro-
viding the pervasive system with a set of constructs that allow to precisely describe the pervasive
system itself. Perv-ML [Munoz et al. 2004] promotes the separation of roles where system develop-
ers can be categorized as analysts and architects. System analysts capture system requirements and

15

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

describe the pervasive system at a high level of abstraction. Analysts use three diagrams (models)
that constitute the analyst view. On the other hand, system architects specify what commercial
off-the-shell devices and/or software systems realize system services. Architects build other three
models that constitute what we call the architect view. This separation facilitates the reuse of the
models defined in the analyst view by any other architects to build models for the architect view.

Perv-ML is built on the model driven development model, and thus follows the MDD techniques.
Perv-ML proposes a PIM (Platform Independent Model) language to describe the system with high
level constructs. It chooses a PSM (Platform Specific Model) reposing on the OSGi technology. It
establishes a set of transformation rules defining how a PIM can be converted to a PSM. Finally,
it generates the code from the PSM to develop the pervasive services. The proposed technique is
described figure

MDA Moxdel to Model Madel to Code
Components Pt T ransform stion PSh Transform ation SI:D;I;CEE

Instantiation

Proposed D505 -
Techhigues Fere-ML Greph Grammars Metarmodel Templates SDSdG;I |\

Figure 2.1: Perv-ML MDA

The definition of transformations between PIM and PSM involves jumping a wide gap between
abstraction levels. [Munoz et al. 2004] are using graph transformations and graph grammars as the
model transformation engine. From a mathematical point of view, a model can be seen as a graph
where model elements are labeled nodes and the relationships between model elements are edges.
In this way they can apply all the existing knowledge for defining graph transformations in order
to achieve model transformations in the MDA context. Graph grammars have many advantages
over other proposed techniques: a formal mathematical sound, algorithms for applying them and
a graphical representation for defining intuitively transformations. Perv-ML proposes rules for
model transformation from Perv-ML models to OSGi-based models. Every rule is composed by
a Left Hand Side (LHS), that defines a pattern to be matched in the source graph, and a Right
Hand Side that defines the replacement for the matched subgraph. For instance, when a Perv-ML
component element is found it must be transformed into a Bundle element, and references to a
ServiceActivator and Manifest elements have to be created and linked to the Bundle. In this
simple rule example, the Perv-ML component element belongs to the PIM language description.
The Bundle, ServiceActivator and Manifest elements are special to the OSGi specifications.

16

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

Following these rules, the system transforms an abstract definition of a service into a platform
dependent one, and abstract model of services becomes real component pervasive services.

2.2.2 MIDAS: Model drlven methodology for the Development of web Infor-
mAtion Systems

MIDAS [dCastro et al. 2006] presents a model driven method for service composition modeling,
which could solve the limitations of current service composition languages such as BPEL. MI-
DAS [dCastro et al. 2006] defines new modeling concepts and also new models in which these
concepts are represented. Moreover, the method proposes a process which consists of the descrip-
tion of the tasks for the generation of each new model and which also defines the mapping rules
between them. The modeling process starts identifying the services that will be offered to users;
it allows MIDAS [dCastro et al. 2006] to obtain a platform-independent model, called the service
composition model, which makes the mapping to a specific Web service technology easier. Within
the context of this work, a service is defined as a complex functionality, offered by the system, that
satisfies a specific need of the user, and the term Web services refers to the technology chosen to

implement a service or a part of it.

Business Model

User Services
Wlodel

Extended Use
Cases Model

Service Process
Model

Service Composition
Wodel

Figure 2.2: MIDAS concepts

The method for the service composition modeling defines a process, new models and mappings
between them. the method introduces a new set of concepts necessary for the service composition
modeling, which are represented on the different models proposed by the method. The new concepts
and the relations between them are:

e Service is a complex functionality, offered by the system, which satisfies a specific need of the
user. A service models how the systems should behave in response to a user’s needs.

e Use service is a functionality required by the system to carry out a service. MIDAS model as
use services all the functionalities needed for the execution of the services.

17

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

e Service process represents the execution flow of a service. Each service defines a service
process, which is modeled through an activity diagram.

e Service activity is the specification of a behavior that is part of the execution flow of a service.
The service activities represent the behavior of the basic use services in the activity diagram
that models the service process.

e Activity operation declares an action that is supported by the service activity.

e Business collaborator is an organizational unit that carries out some activity operation, which
is involved in the services offered as Web services.

The method for the service composition modeling (see Figure includes the new models
defined above. The input of the method is the business model, in which the user, business collab-
orators, and services are identified. The output is the service composition model, from which it is
possible to make the transformation to the Web service technology. MIDAS [dCastro et al. 2006]
defines three intermediate models to obtain the service composition model: the user services model,
the extended use cases model and the service process model. The process comprises several steps,
each one related to the generation of a different model (user services model, extended use cases
model, service process model and service composition model). In this way, the process is defined
as the set of tasks to be carried out in order to generate each model. MIDAS [dCastro et al. 2006]
describes the transformation rules in natural language. To illustrate the process, MIDAS have
presented a case study. Using the case study, MIDAS have explained the process, the way of iden-
tifying the new concepts for building models and also how to make the transformation between
models.

2.3 Service Composition Middleware

Service composition allows the combination of multiple services into a single composite service,
which may be achieved at design-time (static) or at run-time (dynamic). In current middleware
and systems, dynamic service composition is very often associated with the realization of user
tasks on the fly. Indeed, service composition can be a major key for the user-centrism paradigm
by enabling the user to be at the heart of the realization of his daily tasks through the combi-
nation of relevant services available in the vicinity. If some service discovery mechanisms such
as DLNA, which is based on UPnP, support service compositions, many dedicated service com-
position middleware exist. Service composition has been tackled in SOA in general such as in
SWORD [Ponnekanti et Fox 2002] and is not specific to the pervasive environments. Software
composition in general and service composition in particular were widely developed and used in
web services technologies but also in middleware such as CORBA. For conciseness, in this section we
will be interested only in service composition middleware adapted for pervasive environments. The
three middleware depicted in this section (PERSE [Mokhtar 2007], SeGSeC [Fujii et Suda 2005],
and Broker [Chakraborty et al. 2005]) are, as all other major current service composition middle-
ware (SeSCo [Kalasapur et al. 2007], WebDG [Medjahed et al. 2003], eFlow [Casati et al. 2000, ,

18

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

and Contract-Based composition [Milanovic 2006]), goal-oriented as they dynamically compose ser-
vices in response to a user task. For conciseness, we choose to detail only three service composition
middleware.

2.3.1 PERSE: PERvasive SEmantic-aware Middleware

PERSE [Mokhtar 2007] proposes a semantic middleware, that deals with well known functionalities
such as service discovery, registration and composition (cf. figure 3). This middleware provides
a service model to support interoperability between heterogeneous both semantic and syntactic
service description languages. The model further supports the formal specification of service con-
versations as finite state automata, which enables the automated reasoning about service behavior
independently from the underlying conversation specification language. Hence, pervasive service
conversations described with different service conversation languages can be integrated toward the
realization of a user task. The model also supports the specification of service non-functional prop-
erties based on existing QoS models to meet the specific requirements of each pervasive application
through the QoS aware Composition service.

Service Composition

Service

Service » Service __, QoSaware _ piscovery & - @
Conformance Coordination Composition Invocatign
Composite
service
Efficient Semantic
Service Registry
. Service
Publication i !
Int bl)
Legacy Description n:;?npaer:ﬁc R x| —-— O‘O Service
Adv/Req | Translator T e ¥ o Matching
description . = 6‘
I Serw_ce 4
Location

Figure 2.3: Semantic service middleware

PERSE [Mokhtar 2007] introduces the architecture of a semantic service registry for pervasive
computing. This registry allows heterogeneous service capabilities to be registered and retrieved by
translating their corresponding descriptions to a predefined service model through the Description
Translator. Service discovery protocol interoperability requires the translation of service advertise-
ments into a common service description language for enabling service matching and composition

19

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

to be performed independently from the specific underlying languages. Once the translation done,
the services can be published, stored, compared or composed depending on what is needed in the
environment.

In PERSE [Mokhtar 2007] networked services of the pervasive computing environment and
user tasks are modeled as conversations using OWL-S [Coalition 2003]. OWL-S, formerly DAML-
S [Pagels 2005, is the acronym for web ontology language for Web services which aims at connecting
the Web services world with the semantic web. This language describes Web services using three
parts: service profile for advertising and discovering services; the process model, which gives a
detailed description of a service’s operation; and the grounding, which provides details on how
to interoperate with a service, via messages. Within the task description, the capabilities are
abstract, i.e., they do not refer to any specific networked service, as these capabilities have to be
dynamically provided by the pervasive computing environment and may be realized by either atomic
or composite processes of networked services. Indeed, this depends on the service implementation.
The same capability can be developed as a single client/service interaction or as a sequence of
client /service interactions.

In a composition process, PERSE [Mokhtar 2007] performs a semantic matching of interfaces -
through the Service Matching - that leads to the selection of the set of services that may be useful
during the composition. Then, PERSE [Mokhtar 2007] performs a conversation matching starting
from the set of previously selected services, thus obtaining a conversation composition that behaves
as the task’s conversation. The matching is based on a mapping of OWL-S conversations to finite
state automata. This mapping facilitates the conversation composition process, as it transforms
this problem to an automaton equivalence issue. Once the list of sub-automata that behaves like the
task automaton is produced, a last step consists in checking - through the Service Conformance
and Service Coordination - whether the atomic conversation constraints, have been respected in
each sub-automaton. After rejecting those sub-automata that don’t verify the atomic conversation
constraints, PERSE [Mokhtar 2007] selects arbitrarily one of the remainders, as they all behave
as the user task. Using the sub automaton that has been selected, an executable description of
the user task that includes references to existing environment’s services is generated, and sent to
the Service Discovery & Invocation that executes this description by invoking the appropriate
service operations.

[Mokhtar 2007] have implemented a prototype of PERSE using Java 1.5. Selected legacy
plugins have been developed for SLP using jSLP, UPnP [Cooperation 2000] using Cyberlink, and
UDDI using jUDDI. The efficiency of PERSE has been tested and proved in the evaluation of the
cost of semantic service matching, the time to organize the semantic service registry, the time to
publish and locate a semantic service description as well as the comparison of the scalability of
the registry compared with a WSDL service registry, and finally the processing time for service
composition with and without the support of QoS.

2.3.2 SeGSeC: Semantic Graph-based Service Composition

SeGSeC [Fujii et Suda 2005] proposes an architecture that obtains the semantics of the requested
service in an intuitive form (e.g. using a natural language), and dynamically composes the re-

20

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

quested service based on its semantics. To compose a service based on its semantics, the proposed
architecture supports semantic representation of services - through a component model named
Component Service Model with Semantics (CoSMoS) - discovers services required for composition
- through a middleware named Component Runtime Environment (CoRE) - and composes the
requested service based on its semantics and the semantics of the discovered services - through a
service composition mechanism named Semantic Graph-Based Service Composition (SeGSeC).

Semantic
Analyser
Workflow
User request
User request . .
natural language |— Request —» SZT:;P:IC — gg:;r;&c;sne
Analyser

= Service — | Workflow | —» Service —»@
Composer Performer

S
o@ Service
O‘AD 22 Directories
O

Figure 2.4: Modules in SeGSeC

SeGSeC [Fujii et Suda 2005] consists of four modules: RequestAnalyzer, ServiceComposer,
SemanticsAnalyzer, and ServicePerformer (cf. figure . When a user requests a service in
a natural language RequestAnalyzer parses the request into a CoSMoS semantic graph represen-
tation. In CoSMoS, a service is represented as a graph of nodes and links, where nodes represent
data types, concepts, logics, or components, and links represent relationships between nodes. Then,
RequestAnalyzer passes the semantic graph (i.e., the user request) to ServiceComposer.

Upon receiving the user request from RequestAnalyzer, ServiceComposer discovers services
based on the user request. After discovering the services, ServiceComposer creates an execu-
tion path by finding other services that can be supplied as the inputs of the operation. Then,
ServiceComposer computes all possible combinations of the services. ServiceComposer sorts the
combinations based on their similarity values (number of common node in the combination and
the user request) and compatibility rules and chooses the top one. ServiceComposer iterates the
process an extends the execution path until all the operations in the execution path become ex-
ecutable. Then, ServiceComposer gives the execution path (in the form of semantic graph) and
the user request (which is also a semantic graph) to SemanticsAnalyzer to check whether the
semantics of the execution path is satisfied by the user request.

21

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

SemanticsAnalyzer applies the semantic matching rules onto the execution path in order to
derive the semantics of the path. Those rules are designed such that they derive semantic facts from
the given execution path, by adding proper links between concepts in the execution path based on
the data flows (i.e. argument links) and the structure of components (i.e. operations and properties)
defined in the execution path. In order to derive the semantic facts from the execution path and
compare them with the user request, SemanticsAnalyzer interprets the links in the user request
as goal statements and the links in the execution path as fact statements, and performs reasoning
(such as forward chaining) to check if the goals (i.e. user request) can be derived by applying the
rules onto the facts (execution path). If SemanticsAnalyzer could successfully conclude that the
goals are derived by applying the rules, SemanticsAnalyzer notifies ServiceComposer that the
given execution path satisfies the user request. In this case, ServiceComposer proceeds to the next
step, service execution, to execute the path.

ServicePerformer module takes in charge invoking the Web services. After ServiceComposer
concludes that the semantics of the execution path matches the user request, ServiceComposer
passes the execution path to ServicePerformer. ServicePerformer then asks the user whether
to execute the path or not. If the user agrees to execute, ServicePerformer executes the given
execution path by accessing the services, i.e., by invoking operations and retrieving properties of
services in the specified order, through specific access interface. If the user disagrees with the
path, ServicePerformer asks ServiceComposer to continue the combination process to search for
alternative paths.

SeGSec [Fujii et Suda 2005] was evaluated according to the number of services deployed and
the time needed to discover, match and compose services. Another set of evaluations took not only
the number of deployed services but especially the number of operations these services implement.
Their results show that SeGSeC [Fujii et Suda 2005] performs efficiently when only a small number
of services are deployed and that it scales to the number of services deployed if the discovery phase
is done efficiently.

2.3.3 Broker Approach for Service Composition

Broker |[Chakraborty et al. 2005] presents a distributed architecture and associated protocols for
service composition in mobile environments that take into consideration mobility, dynamic changing
service topology, and device resources. The composition protocols are based on distributed broker-
age mechanisms and utilize a distributed service discovery process over ad-hoc network connectivity.
The proposed architecture (cf. figure 2) is based on a composition manager, a device that man-
ages the discovery, integration, and execution of a composite request. Two broker selection-based
protocols - dynamic one and distributed one - are proposed in order to distribute the integration
requests to the composition managers available in the environment. These protocols depend on
device-specific potential value, taking into account services available on the devices, computation
and energy resources and the service topology of the surrounding vicinity.

The broker-based approach [Chakraborty et al. 2005] proposes a Description-level Service Flow
(DSF) which stands for a declarative description of a composite service or a composite request. A
service is defined as any software component, data, or hardware resource on a device that is acces-

22

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

Evaluator . Generator Builder
; : ; : ; : Composite
DSF |— Broker -—— DSF |—™ Service —>| ESF | ™= Service @ —= Service
. Arbitration . Integration | . Execution | ﬁ
Fault /
Monitoring

]
- Distributed

service

O
o 0O registries

© oo

Figure 2.5: Service composition and management layer

sible by others. Services are located on devices connected to each other using ad-hoc networking
protocols. [Chakraborty et al. 2005] uses an ontology DAML [Pagels 2005] to effectively describe
services. Services are classified into a hierarchical group based on their functionalities. DAML-
S [Pagels 2005] supplies Web services providers with a core set of markup language constructs for
describing the properties and capabilities of their Web services in unambiguous, computer inter-
pretable forms. DAML-S markup of Web services will facilitate the automation of Web services
tasks including automated Web services look up, execution, interoperation, composition and exe-
cution monitoring.

The Broker based composition proposed by [Chakraborty et al. 2005] uses DAML-S for speci-
fying a composite service. The specification consists of a list of service descriptions along with the
desired flow of execution that constitutes the composite service. This description is referred to as
the Execution-level Service Flow (ESF'). ESF stands for a complete specification of the composite
service with execution-level details required to invoke the services in the service provider.

The Broker based composition [Chakraborty et al. 2005] proposes two protocols for selecting an
adequate broker for a given composition request, the dynamic broker selection and the distributed
broker selection. This selection takes place in the Broker Arbitration (Evaluator) (cf. figure 2).
The first protocol applies a broker arbitration that consists of controlled broadcasting of solicitation
requests to devices in the nearby vicinity of the request source. The broker arbitration module in
each device replies with information regarding its potential to be a composition manager for the
request. The request source elects the best possible composition manager from the available devices
and sends the Description-level Service Flow (DSF) to it. The elected composition manager on
receiving the request increments its load level (number of executing composite requests) and starts
processing it via the Service Integration (Generator) (cf. figure 2). The protocol evaluates the
potential value of each node using formal methods evaluating local resources such as number of

23

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

matching local atomic services, battery life, current processing load on the node, and the number
of remote service advertisements cached by the device of the node. An equation calculates the
potential of each nodes. And the best node is selected to be the broker for a given composition
request. The second protocol relaxes the single composition manager execution policy imposed by
the first protocol. It distributes the task of composing a service to multiple composition managers
on an as-needed basis. And by this way the new protocol reduces the burden on the request source
since it would not have to handle any more the faults of failure of the central composition manager.

[Chakraborty et al. 2005] broker based composition relies on a star-based execution pattern.
The composition manager with its Service Execution (Builder) (cf. figure 2) coordinates the
execution of the services in the order specified by the Execution-level Service Flow. The broker uses
the underlying routing protocol to transmit results received from one service to another during the
execution. The partial results flow from one device to another through the composition manager.
A mesh-based execution pattern where the result would directly flow from one service to the next
service is under study.

[Chakraborty et al. 2005] implemented a protocol as part of a distributed event-based mobile
network simulator, to test the two proposed broker arbitration protocols and the composition
efficiency. Simulation results show that their protocols - especially the distributed approach - exceed
the usual centralized broker composition in terms of composition efficiency and broker arbitration
efficiency.

2.4 Service Adaptation Middleware

Service adaptation middleware adapt the functional and non functional behavior of a ser-
vice to meet the application needs. This adaptation is done at run-time (dynamic), as
pervasive applications need to cope with unpredictable changes. @ While an adaptive be-
havior implies the capability of a middleware to run in a number of different configura-
tions, these middleware also need to dynamically perceive the characteristics of the surround-
ing environments and that by being context aware. Adaptation to changes might hap-
pen [Kjaer 2007] in middleware such in Aura [Garlan et al. 2002], Carisma |[Capra et al. 2003|, Cor-
tex [Sorensen et al. 2004], Carmen [Bellavista et al. 2003, and Madam [Floch 2006] or in the appli-
cations such in Cooltown [Debaty et al. 2003], Socam [Gu et al. 2004], Gaia [Chetan et al. 2005,
MiddleWhere [Ranganathan et al. 2004], and MobiPADS [Chan et Chuang 2003] . For concisness,
we only detail three of these middleware: Madam [Floch 2006], Carisma |[Capra et al. 2003|, and
Socam [Gu et al. 2004].

2.4.1 MADAM: Mobility and ADaptation enAbling Middleware

A main idea in MADAM [Floch 2006] is to model MADAM Middleware as a Component framework,
allowing middleware services to be composed in a flexible manner and thus supporting adaptability
of the middleware. MADAM [Floch 2006] presents three components: the context model, the
resource model, and the property model. The context model and the resource model are used to
describe the environment where components are executing. The property model is used to describe

24

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

the properties of the services offered or required by components. In MADAM, a component is
defined as a unit of composition with contractually specified interfaces and explicit dependencies. A
component type is associated to a set of port types that components of that type should implement.
MADAM component architecture also defines the component plan, which maintains the association
between a component type and a component, together with the component’s context and resource
dependencies expressed by property statements.

The component model, the context model, the resource model and the property model are used
to build the architecture model of an application. To enable the MADAM Middleware to adapt
an application, a run-time representation of the application component framework must be made
available for the middleware. This representation is called the application architecture model, and
it includes specification of application structure, variability and distribution aspects, and specifies
the properties of each variant which can be derived from it. It is built and maintained dynamically
from context and resource information and the set of component plans.

A plan describes a component as one alternative realization of a component type. A plan
specifies the behavior of a component through its provided and required ports, the properties of
the component, and the implementation resources for that component. A plan may refer to different
kinds of implementation resources. Several implementation resources may be used to implement
the same component type, but they may exhibit differences in offered and needed properties. In
MADAM, properties of interest are QoS characteristics, device and network capabilities and user
needs. The developer(s) may publish several plans associated with one component type, where each
plan specifies the properties of the implementation resources referred to by that plan. The property
specifications are used by the MADAM platform to distinguish and select between alternative
implementations of a component type. The association of component type with plans is thus a
central mechanism for describing variability in the architecture model.

Context Model Adaptation Middleware Application instance
Application framework Context Adaptation Configurator Conr:'gc;s;:lon
Architecture model manager manager
Component
Component COI’e Component mw instances

repository

Distributed computing environment

Figure 2.6: Architecture of Madam

The middleware architecture is shown in Figure[2.6, The core provides the fundamental platform
independent services for the management of applications, components and component instances.
The core relies on the basic mechanisms for instantiation, deployment and communication provided
by the distributed computing environment. Beyond the core, every thing else is a component. The

25

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

adaptation middleware includes three main services:

e The Context manager monitors the user and execution context for detection of relevant
changes. Context Manager is responsible for sensing and capturing context information and
changes, providing access to context information (pull) and notifying context changes (push)
to the Adaptation Manager.

e The Adaptation Manager is responsible for reasoning on the impact of context changes on
the application(s), and for planning and selecting the application variant or the device con-
figuration that best fits the current context. As part of reasoning, the Adaptation Manager
needs to assess the utility of these variants in the current context. The Adaptation Manager
produces dynamically a model of the application variant that best fits the context.

e The Configurator is responsible for co-ordinating the initial instantiation of an application
and the reconfiguration of an application or a device. When reconfiguring an application, the
Configurator proceeds according to the configuration template for the variant selected by
the Adaptation Manager.

In order to allow the development of adaptable applications developers need modeling lan-
guage extensions and tools that enable them to specify the adaptation capabilities at a platform-
independent level and tools that perform the transformation of the abstract adaptation model
to platform-specific source code. MADAM defines the MADAM UML Profile which enhances
and tailors the semantics of UML modeling elements with regard to the task of specifying the
adaptation capabilities of self-adaptive applications. MADAM provides a complete MADAM Tool
Chain covering the whole path from the platform-independent application adaptation model to the
platform-specific source code. The tool chain incorporates UML modeling tools that support the
MADAM UML Profile in order to allow the specification of the application adaptation model and
incorporates the transformation tool MOFScript which is able to generate the corresponding source
code as expected by the MADAM middleware.

2.4.2 CARISMA: Context-Aware Reflective mlddleware System for Mobile
Applications

CARISMA [Capra et al. 2003] is a middleware model that exploits reflection to enable context-
aware interactions between mobile applications. It focuses on the adaptation aspect of a running
application that uses services in a mobile environment. Applications are allowed to dynamically
inspect middleware behavior (introspection), and also to dynamically change it (adaptation), by
means of a meta-interface that enables run-time modification of the internal representation pre-
viously made explicit. The middleware is in charge of maintaining a valid representation of the
execution context, by directly interacting with the underlying network operating system. By con-
text, we mean everything that can influence the behavior of an application, from resources within
the device, such as memory, battery power, screen size and processing power, to resources outside
the physical device, such as bandwidth, network connection, location and other hosts within reach,
to application-defined resources, such as user activity and mood.

26

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

Application/User Space

Application Model
Core Services

Context management Core

Network Operating System

Figure 2.7: Architecture of Carisma

CARISMA [Capra et al. 2003] provides application engineers with an abstraction of the mid-
dleware as a customizable service provider. In particular, the behavior of the middleware with
respect to a specific application is described as a set of associations between the services that the
middleware customizes, the policies that can be applied to deliver the services, and the context
configurations that must hold in order for a policy to be applied. Each time a service is invoked,
the middleware consults the profile of the application that requests it, queries the status of the re-
sources of interest to the application itself, as declared in the profile, and determines which policy
can be applied in the current context, thus relieving the application from performing these steps.
Through a reflective API , applications can dynamically inspect the content of their profile (i.e., the
current configuration), and alter it by adding, deleting and updating the associations previously
encoded.

CARISMA [Capra et al. 2003] also provides a mechanism based on sealed bit auctions to resolve
conflicts or lets say to be able to choose between different possible policies for a same context. A
formalization of this auction is given and tests are conducted to show that all these techniques -
reflection, policies, auctions - respect the simplicity, dynamicity, and other properties imposed by
pervasive environments.

The CARISMA architecture is made up of four main components, as shown in Figure the
Core component provides basic functionalities, such as support for asynchronous communication,
service discovery, etc. The Context Management component is responsible for interacting with
physical sensors and monitoring context changes. Core Services take care of answering service
requests with application-defined QoS levels. The Application Model defines a standard frame-
work to create and run context-aware applications on top of our middleware model.

2.4.3 SOCAM: Service-oriented Context-Aware Middleware

SOCAM [Gu et al. 2004] architecture aims to enable rapid prototyping of context-aware ser-
vices in pervasive computing environments. The middleware converts various physical spaces

27

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

where contexts are acquired from a semantic space where contexts can be easily shared and ac-
cessed by context-aware services. SOCAM consists of Context Providers, Context Interpreter,
Context Database, Service Location Service and Context-aware Mobile Services asshown
figure The SOCAM middleware components are designed as independent service components
which may be distributed over heterogeneous networks and can interact with each other.

Context aware Context aware

) -) ! Context aware
mobile service mobile service

mobile service

Context Interperter

Service Context Reasoner Context
Locat_lng RDB Database
Service
Context KB
Context Context Context
Provider Provider Provider

Figure 2.8: Architecture of Socam

Context Providers provide context abstraction to separate the low-level context sensing from
the high-level context manipulation. Each context provider needs to be registered into a service
registry by using the Service Locating Service mechanism and can be discovered by others.

The Context Interpreter also acts as a context provider as it provides high-level contexts by
interpreting low-level contexts. It consists of a context reasoner and a context KB. The context
reasoner has the functionality of providing deduced contexts based on direct contexts, resolving
context conflicts and maintaining the consistency of the context Knowledge Base (KB). The Context
KB provides a set of API’s for other service components to query, add, delete or modify context
knowledge. The Context KB contains: context ontologies in a sub-domain and their instances.
These instances may be specified by users in case of defined contexts or acquired from various
context providers in case of sensed contexts.

The Service Locating Service allows user, agents and applications to locate different context
providers. The main features include scalability, dynamics and multiple matching.

Context-aware mobile services are applications and services that make use of different level
of contexts and adapt the way they behave according to the current contexts. By querying the
service registry provided by the Service Locating Service, we are able to locate all the context
providers which provide a set of interested contexts.

To construct context-aware mobile services, a common way is to specify actions that are trig-
gered by a set of rules whenever the current context changes. In the SOCAM, service developers can
easily write pre-defined rules and specify what methods to be invoked when a condition becomes
true. All the rules will be saved in a file and pre-loaded into the Context Reasoner.

28

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

2.5 Classification and Discussion

We classify the service middleware - PERSE [Mokhtar 2007], SeGSeC [Fujii et Suda 2005],
Broker [Chakraborty et al. 2005], Carisma [Capra et al. 2003], MADAM [Floch 2006], SO-
CAM [Gu et al. 2004], Perv-ML [Munoz et al. 2004], and MIDAS [dCastro et al. 2006] under three
requirements.

The chosen requirements are the unified vision, QoS management and spontaneity of the
integration.

Unified vision The service integration as we define it, is composed of three essential
actions: transformation, composition, and adaptation. These three actions are all needed in
order to offer a service integration middleware. If the listed middleware are all specialized in one
specific task, some of them can do more than one action. We classify the six above middleware to
distinguish the ones that do a complete or partial service integration as we define it.

QoS management QoS represents the set of those qualitative and quantitative charac-
teristics (QoS characteristics) of an application necessary to achieve the required functionality
from the application. QoS management is essential in dynamic environments, where connectivity
is very variable. A pervasive middleware for service integration need to take the non functional
parameters of applications, and devices into consideration in order to provide viable and flexible
integration plans and composite services. The integration execution need to rely on these
parameters in order to take place in the best conditions.

Spontaneity concerns the ability of a pervasive middleware to integrate services inde-
pendently of user and application requests. The middleware spontaneously transforms all the
available services in the vicinity into a common model, composes services that are compatible
together producing a new composite service into the environment, and adapts the services to
the all possible changes. Spontaneous service integration is an interesting feature in pervasive
environments, as services meet when the user encounter, and interesting composite service can be
generated from these meetings, even though not required at that moment by users. To evaluate
the spontaneity of a service integration middleware, we evaluate the three following properties:
proactivity, dynamism and smartness.

Our classification (cf. figure points out the limitations of the current integration ser-
vice middleware concerning the three requirements we defined.

PERSE [Mokhtar 2007] middleware proposes to resolve user tasks by seeking for the desired
functionality in the environment. For that it first translates the diverse service descriptions into
one common model and then composes them to provide the functionality. It adapts this service
composition result to the changing nature of the environment, and if many service compositions for a
same request are possible, it chooses the best one depending on their QoS properties. If composition
mechanisms are well elaborated in PERSE. The transformation and adaptation model as we define
them are not really addressed. Interoperability is achieved in PERSE through the translation of

29

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

Transformation ~ Composition Adaptation

middleware middleware middleware
= T = =

S Z w 3 5 E I X

' 0O ' n = =) O

S = mle 1= 5 < O

p = o 3 o O = o

Unified vision

~
~
~
~

Composition
Adaptation / /
Transformation /

~
NN
~

QoS
management / /

Spontaneity

Dynamism / / / / / l/ / /

Proactivity
Smartness

Figure 2.9: Service middleware classification

heterogeneous service advertisements to a common language. PERSE does not define a PIM model
and transformation rules to pass from the PIM to some PSMs. The service technology in PERSE is
the Web services technology and the translation mechanisms are especially used when discovering
services. The adaptation concerns the composition itself and not any service in general evolving
in the environment. Service composition can be adapted to changes in the environment. For that
it is sufficient to replace a certain sequence of services by another. PERSE describes the QoS of
services and reposes upon these when composing services together. Services that return compatible
QoS are composed together. PERSE is clearly goal-oriented as it aims at fulfilling the users need.
Spontaneous service composition, without the user intervention is not considered.

SeGSeC [Fujii et Suda 2005|] proposes a mechanism to compose Web services based on a seman-
tic description of these latter. SeGSeC does not propose service integration mechanisms as it does
not deal with the service transformation or service adaptation. The service technology used is the
Web services. By using Web services, SeGSeC argues that it fulfills the interoperability require-
ment. The composition is based on a semantic matching of the functional parts of the services.

30

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

A module is responsible for checking the validity of the composition. The non functional part of
services, such as QoS are not taken into account. SeGSeC is also reactive as it fulfills user require-
ments and comes back to users once a valid composition path is found for validation. Spontaneous
service integration is not considered at all.

Broker [Chakraborty et al. 2005] proposes dynamic and distributed protocols for service com-
position in mobile environments. It does not deal with service transformation aspect as it uses an
ontology DAML [Pagels 2005] to effectively describe services. Adaptation aspects are only taken
into account when deciding which manager is responsible of a service composition depending on the
device it executes on. The QoS management of services is not taken into account. Although service
composition is distributed over devices that are hierarchized according to their resource capacities,
no real QoS management mechanisms are taken into account when composing services together.
The service composition is initiated upon user requests and is goal-oriented and not pro-actively
initiated by the environment.

MADAM [Floch 2006] is a service adaptation middleware for pervasive environments. It con-
siders application as being the composition and instantiation of component services, which are
possibly distributed on different hosts and try to adapt these applications to the environment
changes. MADAM does not provide mechanisms for composing components. It rather adapts
the already existing service composition seen as applications. Adaptation is needed when there is
a mismatch between the quality of the services provided by the application and the user needs,
or between the application needs and the context. The QoS provided by a component service is
described and quantified using the property model: each QoS characteristic is represented by a
property. MADAM relies over the MDA concept to be independent of any technology. It therefore
proposes a service transformation middleware beside its service adaptation middleware. Adapta-
tion is defined as the activity of adjusting to varying contexts. It is a response to an action and
the spontaneity is not considered.

Carisma [Capra et al. 2003] offers application engineers an abstraction of middleware as a dy-
namically customizable service provider, where each service can be delivered using different policies
when requested in different contexts. Carisma is an adaptable middleware and does not offer mech-
anism to compose services. It does not deal with the service transformation issues as it considers a
common component model. The QoS management is verified in Carisma as in any adaptation mid-
dleware. Carisma proposes an auction based mechanism in order to choose between the different
possible QoS offered by the services of the application. Spontaneity is not addressed as Carisma
allows applications to adapt to the context, by letting them define their policies and strategies.

SOCAM [Gu et al. 2004] provides an architecture for application adaptation based on specific
rules that are triggered upon certain events related to context changes. The service composition
and transformation aspects are not tackled by this architecture. There is no unified vision for the
service integration. The proposed adaptation responds to context changes and is not proactive and
spontaneous. SOCAM supports rules for specifying which methods should be invoked on events.
The rules are predefined and loaded into the context reasoner. There are no mechanisms for QoS
management.

perv-ML [Munoz et al. 2004] and MIDAS [dCastro et al. 2006] are both service transformation

31

CHAPTER 2. OVERVIEW OF THE SERVICE INTEGRATION MIDDLEWARE

middleware that rely over the MDA principles. They define a PIM model for the pervasive services
and a set of rules to transform their PIM model to a PSM. In perv-ML the chosen PSM is OSGi
based platform, and in MIDAS the PSM is the Web services technology model. Both middleware
deal only with the functional parts of services and do not deal with the QoS. In MIDAS the service
transformation is used as a tool for service composition. Service composition is defined as a PIM
model before being mapped to a PSM model in a BPEL format. In both middleware, spontaneity
is not considered.

After analyzing these middleware, a need for a service integration middleware model that does
the service transformation, composition, and adaptation appears. If some of the current approaches
deal with one or two aspects, no unified vision that respects the QoS of services is provided. Even
more, no middleware proposes solution for spontaneous integration of services in a proactive and
smart way, without the user intervention. In the next chapter, we introduce a generic model of a
service integration middleware and propose our own service integration middleware that provides
a spontaneous service integration with non-functional QoS management.

32

Chapter 3

Spontaneous Service Integration
Middleware

3.1 A Unified Vision for Service Integration Middleware] 34
3.1.1 A Service Integration Middleware Model: the SIM Model| 34
13.1.2 An Instantiation of the SIM Model: the MySIM Middleware] 37

3.1.2.1 MySIM Services Descriptions|. 38
3.1.2.2 MySIM Services Interactions| 40

3.2 Service Functional and Non-Functional QoS Integration Relations|. 42
B.2.1 Formal Definitions| o 43
13.2.2 Services Equivalence Relations| 47

13.2.2.1 Functional Interfaces Equivalence Relations|. 48
8.2.2.2 Property Implementation Equivalence Relations| 66
3.2.2.3 Non-Functional QoS Equivalence Degree] 68
8.2.3 Services Composition Relations| 0000 71
8.2.3.1 Functional Services Composition Relationl. 72
13.2.3.2 Non-Functional QoS Services Composition Relation| 76

13.3 Spontaneous Functional and Non-Functional QoS Service Integration|. 78
3.3.1 Spontaneity Versus Goal-Oriented Service Integration| 78
13.3.2 Spontaneous Service Composition| 82

13.3.2.1 Spontaneous Service Composition Lite Cycle| 83
13.3.2.2 Spontaneous Service Composition Techniques|. 86
[3.3.3 Spontaneous Service Adaptation| Lo Lo 93
13.3.3.1 Spontaneous Service Adaptation Life Cyclel 93
13.3.3.2 Spontaneous Service Adaptation Techniques| 95

In this chapter, we detail our contributions in service integration for the pervasive environ-

ment. Our goal is to provide a service integration middleware that responds to the challenging

requirements defined in the previous chapter. First, We introduce a unified vision for the service

integration by defining a novel and intuitive way to model service integration middleware: the SIM

33

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

model. To motivate and proof the genericity of this model, we show that all current service integra-
tion middleware - and not only those presented in the state of the art - can be described using this
model. Then, we introduce our own MySIM integration middleware, explain its general architecture
and show how it respects the three requirements defined in the previous chapter: the unified vision,
the non-functional QoS management, and the spontaneity of service integration. Finally, we delve
deeper into each of MySIM modules to explain our spontaneous service integration that takes into
account non-functional QoS management in pervasive environments.

3.1 A Unified Vision for Service Integration Middleware

We define a service integration middleware as a framework providing tools and techniques for in-
tegrating services. If the integration problem is naturally decomposable into three subproblems
that are the transformation, the adaptation, and the composition, we try to adopt another decom-
position of the integration problem that unify the vision of the three subproblems defined above.
Several studies [Yang et al. 2005, [Rao et Su 2004] already split the service composition process
problem into several fundamental problems. They adopt a runtime vision for the service composi-
tion and split this latter into several phases from the composition specification till the composition
execution. Based on these approaches, we apply this decomposition principle not only to service
composition as they do but to service integration in general as we define it.

We define a service integration middleware model, the SIM model, as an abstract layer, general
enough to describe all existing service integration middleware - transformation, adaptation and
composition middleware. The SIM model is at a high-level of abstraction, without considering a
particular service technology, language, platform or algorithm used in the integration process. We
show that this model is general enough to describe all the existing service integration middleware
and platforms. Then, we introduce and define our integration middleware, MySIM, by depicting its
main functionalities through the various services it contains.

3.1.1 A Service Integration Middleware Model: the SIM Model

The SIM is modeled by four modules (cf. figure [3.I): the Translator, the Generator, the
Evaluator, and the Builder. As an entry point of the SIM are the services of different tech-
nologies available in the environment. These services are potential targets for integration. The
services are modeled differently as they can be provided from different technologies platforms. At
the end point of the SIM are the resulting integrated services (via transformation, composition, or
adaptation). In between, the process of service integration passes through four phases of integration,
that corresponds to the three functional problems: transformation, adaptation, and composition.
In the following we explain the four modules of the SIM model. We depict how the current service
transformation, composition, and adaptation middleware implement these modules.

1. The services available in the environment are implemented and described with diverse lan-
guages or techniques as they are provided from different sources. These services tech-
nologies and services descriptions are transformed to a generic middleware comprehensible

34

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

SERVICE
model
Services Translator | | Generator Evaluator Builder §_ . Integrated
of different ==)) (3) 4) services
technologies

SIM model

Figure 3.1: Service Integration Middleware model

language in order to be used by the middleware framework. The Translator module is
responsible of describing the services available in the environment, the functionalities re-
quested by the applications and users in a system comprehensible language, and for that
it transforms the diverse existing technologies that are platform-dependent into one ser-
vice model independent from the platforms, the SERVICE model (figure . In most
of the service composition middleware, we find this Translator module even if provided
in various forms. Some research, such as PERSE [Mokhtar 2007], provide a translation
mechanism of the available services technologies and services descriptions into one model.
Others, such as SELF-SERV [Constantinescu et al. 2004], propose a wrapper to provide a
uniform access interface to services. [Fujii et Suda 2005] allows users to express their de-
mands in a natural language transformed into a semantic machine-understandable language.
These middleware usually realize transformation from one model to another or from one
technology to another. The technologies are predefined in advance and usually consist of
the legacy ones. If new technologies model appear in the environment, the Translator
module will need to be expanded to take these technologies into consideration. Another
family of research do not provide Translator module as they use common model to de-
scribe all the services of the environment. [Sirin et al. 2003, [Chakraborty et al. 2005] that
deal with web services composition use common description languages such as DAML-
S [Pagels 2005] - recently called OWL-S [Coalition 2003] - for describing atomic services,
composed services and users queries, [Constantinescu et al. 2004, Medjahed et al. 2003] de-
fine their own abstract description model for a service and suppose that all services in the en-
vironment are described using this model. Other approaches [Hashemian et Mavaddat 2000,
Casati et al. 2000, [Kalasapur et al. 2007] use graphs as a common infrastructure representing
services. All the available services, provided by different technologies, are modeled in graphs.
By this way, services can be compared and matched even if originally they are provided in
different technologies.

2. Once transformed into a common model, the SERVICE model, the services are sent to the

35

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Generator in order to be integrated (adapted and/or composed). The Generator will try
to provide new functionalities by composing the available services, or to adapt the execution
of services and applications to the environment changes. It tries to generate one or sev-
eral composition or adaptation plans with the services available in the vicinity. It is quite
common to have several integration plans, as the number of available functionalities in per-
vasive environment is always in expansion. The Generator module is the one responsible of
elaborating all possible plans for adapting and composing applications and services. A plan
specifies both the services to integrate, the way to combine them, and to adapt them in order
to accomplish a required functionality. In the literature, two main approaches were widely
adopted to model this planning: the graph-based description approach and the language
composition one. These two approaches model the integration process in a graph or describe
the integration process using a specific language. The following composition oriented middle-
ware: Pcom [Becker et al. 2004], eFlow [Casati et al. 2000], SeSCo [Kalasapur et al. 2005],
and SeGSeC [Fujii et Suda 2005] use graphs to construct their composition plans in order to
fulfill a user task. Others such as PERSE [Mokhtar 2007] model their networked services of
the pervasive computing environment and user tasks as conversations using extended OWL-
S [Coalition 2003]. Number of languages have been proposed in the literature to describe data
structure in general and functionalities offered by devices in particular. If some languages
are widely used, such as XML, and generic for multiple uses others are more specific to cer-
tain tasks as service composition, orchestration or choreography such as Business Process
Execution Language (BPEL4WS or BPEL) [Juric et al. 2006], and OWL-S [Coalition 2003].

. The Evaluator relies on QoS criteria or applications and users profiles [Capra et al. 2003]
to choose the most suitable and realizable integration plan for a given situation. This se-
lection is done from all the plans provided by the Generator. In pervasive environments,
this evaluation depends strongly on many criteria like the context, the technology model,
the quality of the network, the services QoS, and so on. The evaluation needs to be dy-
namic, proactive, and adaptable as changes may occur unpredictably and at any time.
Two main approaches are commonly used: the rule-based planning and the formal meth-
ods approach. Many systems such as eFlow [Casati et al. 2000], SOCAM [Gu et _al. 2004]
and SWORD [Ponnekanti et Fox 2002] employ rules to evaluate whether a given integration
plan is appropriate or not in the actual context. If rules were commonly used as an eval-
uation approach, their use lacks of dynamism proper to pervasive environments. A major
problem of the evaluation approach is namely the lack of dynamic tools to verify the correct-
ness - functional and non functional aspects - of the service integration plan. This aspect
is at the main advantage of what most formal methods offer. The nowadays most popu-
lar and advanced technique to evaluate a given integration plan is the evaluation by formal
methods (like Petri nets and process algebras like the m-calculus). Many middleware such
as Broker [Chakraborty et al. 2005], SeSCo [Kalasapur et al. 2007], PERSE [Mokhtar 2007],
and WebDG [Medjahed et al. 2003] employed formal methods with mathematical proofs to
evaluate a given plan by giving it a value. Automata or labeled transition systems are a
well-known model underlying formal system specifications. On the other hand, Petri nets

36

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

are a framework to model concurrent systems. Their main attraction is the natural way of
identifying basic aspects of concurrent systems, both mathematically and conceptually. Petri
nets are very commonly merged with composition languages such as BPEL [Juric et al. 2006]
and OWL-S [Coalition 2003].

4. The Builder executes the selected integration plans and produces several implementations
corresponding to the required integrated services. It can apply a range of techniques to
realize the effective service integration. These techniques depend strongly on the service
technology model we are composing or adapting and on the context we are evolving in.
Several transformational rules that maps a PIM (platform independent model) to PSMs
(platform specific model) are provided by the Builder in order to implement the resulting
service integration in a given technology model. Service transformation middleware such as
Perv-ML [Munoz et al. 2004] and MIDAS [dCastro et al. 2006] provide the building blocks
of this functional aspect. Once the integrated services available, they are deployed in the
environment for a possible use. In the literature, we distinguish different kinds of builders
provided by the service integration middleware. Some builders are very basic and use only
simple invocation in sequence to a list of services. Others provide complex discovery protocols
adapted to the heterogeneous nature of the pervasive environments. Finally some systems
propose solutions not only located in the middleware layer but especially in the networking
one. Many systems use the well known and well defined services discovery protocols such
as UPnP [Cooperation 2000] and Jini [Kumaran 2002]. Others provide their own services
discovery mechanisms. PERSE [Mokhtar 2007] reposes over MUSDAC [Raverdy et al. 2006]
(MUIti-protocol Service Discovery and ACcess) middleware. MUSDAC enables explicit trans-
lation of service discovery protocol messages. In this middleware, the interoperability layer is
located on top of the existing service discovery protocols, and provides an explicit discovery
API to service requesters. Once the services discovered, as most systems use web services,
the service invocation model is a simple call using the SOAP protocol over the web through
an URL to the chosen web services.

As shown above, the SIM model is generic enough to provide generic functional modules that
describe the existing service integration middleware. In the following, we define our integration
middleware: MySIM middleware. MySIM is an instanciation of the SIM model that also respects and
fulfills the two other pervasive requirements - QoS management and spontaneity - left behind by
most of the current service integration middleware.

3.1.2 An Instantiation of the SIM Model: the MySIM Middleware

In this section, we describe our instantiation of the SIM model: the MySIM middleware. We
decompose the MySIM into several services, each of them corresponding to a specific functional-
ity and belonging to certain modules of the SIM modules. We distinguish the following services:
the Translator Service, the Generator Service, the Decision Service, the QoS Service, the
Builder Service, and the Registry Service.

37

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

3.1.2.1 MySIM Services Descriptions

Mapping MySIM to the SIM model, we gather our services under the four SIM modules (fig-
ure . The SIM Translator module is our Translator Service. The SIM Generator
module is our Generator Service. The SIM Evaluator module is composed of several ser-
vices: Decision Service, QoS Service. The SIM Builder module is the Builder Service and
Registry Service. As shown figure our MySIM provides all the modules defined by the SIM
model.

SERVICE
model
Services Translator Generator Evaluator Builder
of different — - - Integrated
Services

technologies

Translator Generator
Service Service

MySIM middleware

QoS
Service
Decision
Service

Builder
Service
Registry
Service

Figure 3.2: MySIM middleware following the SIM model

Each of these services has a specific task. The two services Translator Service and Builder
Service are responsible of the technical issues of the integration. They provide, each at their
levels, techniques allowing the service transformation, and the service integration implementation
and generation. The Generator Service deals with the functional aspect of services essential
for matching, comparing, and composing services. The QoS Service is responsible of the non-
functional QoS properties of services taking part in an integration. The Decision Service is
responsible of the spontaneity of the service integration and the adaptation issues. MySIM reposes
over a generic SERVICE model defined in section 3.2.1. We briefly explain each of MySIM services:

e The Translator Service translates the diverse technologies offering the functionalities avail-
able in the environment into one generic SERVICE model. As a common representation is
more than necessary in order to compare, match, adapt, and combine the functionalities. It
is unrealistic to suppose that all functionalities of a pervasive environment are described in
a same language or programmed under the same platform. Translators are needed for every
technology model available in the environment. In the section 3.2.1, we define our platform
independent SERVICE model. In chapter 4, we detail the chosen platform dependent service
technology and detail the transformation rules that allow to transform from this model to
our generic SERVICE model and vice versa.

e The Generator Service generates all possible combinations between services based on func-
tional service relations such as functional equivalence and composition relations. Several

38

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

abstract combinations are elaborated depending on the environmental available services, at
a given time. In our middleware, service combinations and relations are done upon syntac-
tic - signature - and semantic service matching. For each service in the environment, the
Generator Service can find all the services available in the environment and that are syn-
tactically or semantically equivalent. This notion of equivalence is based on the functional
part of a service. The Generator Service can also find, for each service, all the services
that respond to a composition relation, syntactic or semantic, between the functional parts
of services. The services relations are described in sections 3.2.2.1 and 3.2.3.1

e The QoS Service is responsible of evaluating the previous equivalence or composition com-
binations by analyzing the services non-functional QoS. If the Generator Service indicates
the possible relations and combinations between services, it does not pay attention to the
services non-functional QoS properties. The QoS Service adds to every abstract services
equivalence or composition compatibility the best non-functional QoS properties it can have,
depending on the non-functional properties of the services involved in the integration. We
distinguish two important cases for dealing with the non-functional QoS properties of services.
The service composition issue and the service adaptation one. In service composition, com-
bining functionalities without paying attention to the services non-functional QoS can lead
to non executable service composition. QoS Service need to check for every service compo-
sition combinations, that the non-functional properties of services are respected. In a service
adaptation, a service is replaced by another one, providing equivalent functionalities. Two
services can be functionally equivalent but provide different non-functional QoS properties.
The non-functional QoS services relations are described in sections 3.2.2.2 and 3.2.3.2.

e The Decision Service is responsible of the initialization of the spontaneous service inte-
gration. It is based on an event-based mechanism of services appearance and disappearance.
It uses the Generator Service and the QoS Service to construct abstract possible equiv-
alence relations or composition compatibilities between services. It decides which abstract
combinations to implement and execute. Our MySIM in pervasive environment provides a
spontaneous service integration: The environment need to be extended spontaneously and
automatically with services, corresponding to the integration between already available ser-
vices and others arriving in the environment. For a spontaneous service composition, the
Decision Service needs to ask the Generator Service and the QoS Service to provide
all the possible service composition, even if these compositions were not initially required by
users. Nevertheless, some conditions, defined and verified by the Decision Service and ex-
ecuted by the Generator Service and the QoS Service modules need to be applied in order
to allow a transparent use and access to these new implemented services. For a spontaneous
service adaptation, the Decision Service needs to ask the Generator Service and the QoS
Service to provide all the possible service equivalences. The Decision Service chooses
from all these possible available services, atomic or composed ones the most appropriate ones
depending on the context, the applications needs, and services QoS. In a changing environ-
ment, such as pervasive environments, decisions also need to be taken to cope with changes

39

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

that may affect services. The Decision Service is thus responsible of all the adaptation
issue such as redirection to another services, and so on.

The Builder Service implements the combinations provided by the Generator Service
and the QoS Service and approved by the Decision Service. The service integration is
technically realized. The Builder Service creates new functionalities respecting our SER-
VICE model (defined in section 3.2.1) and directly implements these services in the chosen
technology model. These newly implemented and generated services will continue to exist
even after that a user or application has finished using them. If many integration middleware
propose to integrate services on the fly, as a runtime workflow where services are chained at
execution time, few implement and generate at runtime new services as independent com-
ponents. The Builder Service proposes several techniques to realize the real integration
of services. Whether the integration is a composition, or an adaptation the techniques are
different. For the service composition the Builder Service proposes the composition by ser-
vices replication or the composition by services redirection. Redirection consists in creating
services that redirect every call to the service to a set of chained services. Replication consists
in creating services that replicate within their implementations the implementations of other
services in order to be independent of them. For a service adaptation, the Builder Service
proposes a facade service that adapt the services execution to the real services implementa-
tions available in the environment. All these techniques are thoroughly explained in sections
3.3.2.2 and 3.3.3.2.

The Registry Service registers the interfaces of the newly integrated services in the envi-
ronment and monitors these services as they are very often dependent on the services they
integrate. They are also dependent on the employed integration technique. The Registry
Service checks periodically if these services execute correctly. It can if needed suspend, stop,
and start the services. Accessing these services can sometimes be impossible as one of the
services involved in the integration can be unavailable. In that case, the new service does not
execute properly and the Registry Service is quickly aware of this change. It notifies the
Decision Service of this failure. This latter is responsible of the adaptation issues.

3.1.2.2 MySIM Services Interactions

We highlight in the following the role that each MySIM services plays depending on the nature of

the service integration. For a service transformation, the services technologies are transformed into

our SERVICE model by the Translator Service. Then, The Builder Service implements these

services into the chosen technology. Finally the Register Service registers these new services in

the environment (cf. figure [3.3)). In our implementation chapter, we explain our transformation
rules that map from the OSGi service model to our SERVICE model defined in section 3.2. We
also explain the implementation and generation of the newly integrated services in OSGi.

40

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

service U
Model () O
O
o ¢
o Q Translator Generator Evaluator Builder
o= o — 0g9
Translator Generator QoS Builder <>
Service Setrvice Service Service

Registry
Service

Decision
Service

Service transformation

Figure 3.3: Service transformation by MySIM middleware

In service composition, the Generator Service generates all the possible abstract composition
services from the set of available services. We suppose that services are represented in our SERVICE
model and if not a previous transformation is done. Once the composition plans generated the
QoS service selects from all these plans the possible composition plans and gives each potential
composition service the adequate QoS in order to produce operable and executable composition
services. Finally the Builder Service implements the new composed services which are registered
via the Registry Service into the environment. The Decision Service has a control role over the
functional quality of the composition and is responsible of starting and stopping the composition

process (cf. figure [3.4)).

seve @T@ @ﬂ

0 d
ot

Translator Generator Evaluator Builder
— -
Translator Generator QoS i
. Build
B |22
Decision Registry
Service Service

Service composition

Figure 3.4: Service composition by MySIM middleware

In service adaptation, a new service may appear in the environment and be more appropriate
for an application, or a service may be unavailable for multiple reasons and need to be replaced.
The Registry Service notifies the Decision Service of such appearance or unavailability. The
Decision Service will have the task to analyze if the new service fits better the applications

41

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

requirements or to replace the disappearing service by a functional equivalent one that can be
atomic or composed (cf. figure [3.5). The Decision Service uses both the Generator Service
and the QoS Service to compute the functional and non-functional equivalences between services.

{ “—J A
= T
) =
Translator Generator Evaluator Builder
-
Generator QoS Builder
Service Service Service

Decision
Service

Registry
Service

Service adaptation

Figure 3.5: Service adaptation by MySIM

Section Conclusion

In this section, we presented a general SIM model - Service Integration Middleware. The SIM pre-
sented a unified vision for the three problems of service transformation, composition and adaptation.
We validated the genericity of the SIM by showing that the current service transformation, adap-
tation, and composition middleware can be depicted using the SIM modules. We then introduced
our MySIM middleware and explained its diverse services and their functionalities. This section ex-
plained how we fulfill the unified vision requirement. In the next section, we will depict our general
SERVICE model and the service relations related to composition - the composition relation - and
to adaptation - the equivalence relation. We will present and will discuss our service functional and
non-functional QoS equivalence and composition relations provided by the Generator Service
and QoS Service and respecting our SERVICE model.

3.2 Service Functional and Non-Functional QoS Integration Re-
lations

In this section, we present our generic SERVICE model and the functional and non-functional QoS
relations between services that we use for our service integration. This platform independent model
relies upon the service-oriented programming paradigm. We formalize our SERVICE model and
depict several service relations the service equivalence and almost equivalence relations (concerning
functional aspects), the QoS equivalence degree (concerning non-functional QoS properties) and
the service composition relation (composition of functional interfaces respecting non-functional

42

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

properties). The service equivalence and almost equivalence relations are used in services adaptation
as a service can be replaced by another one providing the same functionalities but with possible
different non-functional properties. The service composition relation is used in services composition.

SERVICE
Model
Services Translator Generator Evaluator — Builder Integrated
of different Translator Generator QoS Builder Services
technologies Service Service .

Decision Registry

MySIM middleware

Figure 3.6: Modules using the functional and non-functional aspects of a service

Figure highlights the different services of MySIM middleware that are detailed in this section
and that play a role in providing our platform independent SERVICE model and in verifying the dif-
ferent services relations. The SERVICE model provides a generic way to describe the functionalities
of the environment whether they are atomic or integrated and their services QoS. The Generator
Service is responsible of services syntactic and semantic matching to determine services equiv-
alence and services composition relations using their functional interfaces. The QoS Service is
responsible of checking, comparing, and adjusting the non-functional QoS properties of the services
involved in the integration.

In a service adaptation, Generator Service returns all the services functionally equivalent
to the service to adapt and the QoS Service orders these equivalent services from the closest
equivalent service to the farthest one in terms of non-functional QoS properties. Indeed, services
can be functionally equivalent but providing different levels of QoS.

In a service composition, the Generator Service returns all possible service composition plans
and the QoS Service takes in charge verifying and assigning the correct QoS values to the resulting
service composition.

The rest of this section is as follows. First, our generic SERVICE model is defined and formalized
using symbols and operators introduced table 1, 2, and 3. Then, we thoroughly explain our service
equivalence, almost equivalence, (syntactic and semantic) and our service composition (syntactic
and semantic) relations.

3.2.1 Formal Definitions

We define a service as composed of several parts (cf. figure |3.7)):

e Interfaces: a service can hold two kinds of interfaces. Provided functional interface defining
the functional behavior of the service. Required interfaces or operations specifying required

43

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Senrice Protocal
1
- Fechnol.og'g,r:st.ring
imvocation : string
required
1 .
required Elouided i
Implementations Interface
name : string
1.7
1 ’ 1 Qo antitative property
) name : string
1 o.r 1.7 ; .
Funetional property ﬂ numerictalue : float
Operation Mon functional property
1 o.F
e
Qualitative property
1 .
= name : strin
0. 1 1 !
1 0.1
o.r i
Concept Dutput
Input
name : string .
K type @ class
name : string
type : class
1
1
1
has
1 1
1
L
4 SemanticOntologylescription -
1

Figure 3.7: Service Model

functionalities from other services. A functional interface specifies operations that can be
performed on the service. An operation is described by a concept, a set of inputs and an
output. A required interface specifies the set of operations a service requires in order to
execute appropriately. A service can also specifies one or several required operations not
interfaces, as sometimes interfaces contain many other operations the service does not need.

Implementations: implementations realize the functionalities expected from the service.
These are the implementations of the operations defined in the functional interfaces.

Functional properties: a service will register its interface implementations under certain prop-
erties. The functional property is used by the Service Integration to choose services that

44

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

offer the same interfaces, but different implementations. These functional properties specify
whether the service is atomic or integrated (resulting from a service integration).

e Non functional properties: they can be quantitative or qualitative. The non functional proper-
ties describe operations capabilities. These capabilities reflect the quality of the functionality
expected from the service, such as dependability (including availability, reliability, security
and safety), accuracy of the operation, speed of the operation, and so on.

e Semantic description based on ontologies: these descriptions use common ontologies to de-
scribe concepts (of interfaces, operations, properties), outputs, inputs and the non functional
properties in a semantic way. Service description is important in order to locate, publish,

compose, or execute services coming from everywhere, in a pervasive environment.

e Interaction protocols: describe the communication protocol used by the service. These pro-
tocols can be standards such as SOAP for web services, or remote call through a specific
language such as in RPC. Translators must be provided to resolve interoperability problems
if the service technology models used are different.

For all the potential users of a service (applications, clients, etc.), a service is seen as a functional
interface with a number of operations providing specific functionalities, a semantic description, and
interaction protocols specifying how to communicate with the service. The operations’ implemen-
tations are more related to the internal state of the service and are usually not accessible to the
outside world.

In the rest of the section, we use the symbols and operators introduced in tables 1, 2 and 3.
The chosen formalism has not been inspired from a well known formalism but has been rather
chosen for its simplicity in describing our concepts. The notation are simple and we use rules
introduced by first order logic and formal language grammar to describe these concepts. Another
formalism could be used instead if it similarly defines the introduced concepts.

DEFINITION 6 — Service
Consider finite sets of grammatical alphabet 3, services S, interfaces Ifc, operations
Op, non functional properties Np, and protocols Protocol.
We define a service s belonging to S C S as follows:

(s € S < JIfc C Ifc, 30p C 0p,3 Protocol C Protocol):
s: <ife,Ifc*, Op*, Protocol™ >

ifc: < name;ge, Op™ >, name;f. € X*
protocol € Protocol, protocol : < technology,invocation >, {technology,invocation} € ¥*

A service s € S is defined as a tuple of a provided interface i fc, eventual required interfaces I fc
or operations Op, and specified protocols of communication Protocol. An interface ifc is specified

45

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

by a syntactic name;s. and define a set of operations Op. A protocol € Protocol indicates the
service technology model and the employed service method invocation.

DEFINITION 7 — Operation
Consider finite sets of grammatical alphabet 3, ontologies 0, concepts N belongings to
these ontologies 0, operations Op, inputs In, outputs Out, concepts Cpt, non functional
properties Np, quantitative and qualitative non-functional properties Npon, Npor,
implementations Impl, and functional properties Pr. We define an operation op
belonging to Op C O0Op as follows:

(op € Op & I In C In, 3 O0ut C0Out, 3¢pt € Cpt, 3 Np C Np, 3 Npgn C
Npgn, 3 Npor. € Npgr, 3 impl € Impl, 3 Pr C Pr):

op: < In*, Out®™!, cpt, Np*, impl >

n € In, in: < name;,, type;,, semanticy, >, name;, € X*

out € Out, out : < typeour, semanticoyr >

cpt @ < namecpt, Semanticep; >, namee; € XF

type : < languageiype, namesype >, {nameype, languagepype} € *
semantics« : <o,n>, 0 € O C0,n € N CN

np € Np, np: < Npg, Npoy >

npL € NpQL, npQL : < NaMenpg, , SEMaAnticnp,, >, NAMenp,, € F
npQN € NpoN, npoN : < NaMenpgy , numericValuenpgy , 0peratornp,y >, NaMenp,y € X
numericValuean ~ €R

operatornp,y © 1<, >, <, >}

impl : < Pro-1 >

pr € Pr, pr: {< semanticy,valuey, >}

valuey, € {"atomic”, "integrated”}

where:

e [n is the set of the operation op inputs. In = {ml mun‘}. Vj € {1..|Inl]}, in; is defined
as a tuple: < namei,;, typein;, semanticy,; >, where name;,; is the chosen input syntactic
name, type;,; is the syntactic input type, and semantic;,, the input semantic description.

e out € Qut is the operation op output. out is defined as a tuple < typeous, semanticoy: >
where typeo,: is the output syntactic type, and semanticyy; its the semantic description.

e cpt is the concept the operation op defines. The operation op concept cpt is defined as a tuple
< namecp, semanticep: >, where namecy, is the syntactic name through which the operation
is called and semantice,; =< o,n > where 0o € O C 0 and n € N C N is the semantic
ontologies-based description of the operation concept.

46

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

e Np is the set of non functional properties characterizing op. Np can be qualitative or quanti-
tative, Np =< Npg, Npgn >. npgn € Npqr is the qualitative non functional properties
defined as a tuple < namenyp,, , semanticyp,, >. npgn € Npgn is the quantitative non
functional properties defined as a tuple < nameny,, , numericValueny, , , operatorny,, >,
where numericValue,p,, € Rand operatorn,,, € {>, <, <, >}. operatoryy,, specifies
the order applied to numericV alueny,, . For {>, >} the greater the numericValuenp,y is,
the best is the QoS property for the service runtime execution. For {<, <} the smaller the
numericV alueny,, is, the best is the QoS property for the service runtime execution.

e impl is the operation op internal implementation. The operation op implementation
impl is described by a functional property (Pr). Property pr € Pr is a tuple
{< semanticy,, value,, >}Jr where semantic,, =< o,n >, o € O,n € N and value,, €
{"atomic” v "integrated”}. The property describes the operations implementation and spec-
ifies whether this implementation is atomic or integrated (resulting from service integration).

The type depends strongly on the programming language the op is defined in, whereas the semantic
is independent of the technology and more related to the set of defined ontologies O. We define
semantic as a tuple < o,n >, where o € O and n € N.

Our service model is general enough to respect the SOA specifications, and to offer a common
model to the heterogeneous technologies usually available in pervasive environments. The model
proposes semantic descriptions relying on common ontologies, and by that it allows to abstract from
the programming languages. It also models the type of parameter inputs In, and outputs Out.
Later on we motivate our choice of modeling the syntactic part of a service. For now, we would like
to focus on what this model brings to the SOA in pervasive environments: the semantic description
of the integration process. Components and frameworks using services in the middleware layer, are
aware of the integrated functionalities. Services can be chosen not only relying on a description of
the concept, inputs and outputs of their operations as usual, but also using this functional property
that indicates exactly whether a service is atomic or not, and in case of an integrated service
it indicates all the functionalities a service combines. For a same service interface specification
multiple implementations can exist. These implementations are described by different properties.
Adaptation techniques rely on these properties to choose the “best” implementation of a service
interface at a given time and for a given purpose.

Now that we defined our service model, we detail the different possible relations between ser-
vices. We define two kinds of relations between two services s; and sg: equivalence relation and
composition relation (cf. figure . Service equivalence is used for service adaptation in per-
vasive environments. Unavailable services are replaced when needed by other services that can
offer the same functionalities. Service composition relation is used for service composition. Service
composition and service adaptation are explained section 3.3.

3.2.2 Services Equivalence Relations

Service equivalence relations determine whether two services offer the same functionality or not. A
service is considered equivalent to another one if it can offer the same functionality (same interface,

47

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

\ K©
S2 S2
[

Services composition Services equivalience

Figure 3.8: Abstract service relations descriptions

same implementations) even with different non-functional QoS properties. The aim of this section is
to provide definitions of possible relations between the diverse parts of a service in order to identify
and decide when a service can be replaced by another one. Two relations are introduced. The
equivalence (=) and the almost equivalence () relations. These relations are defined over the two
main functional parts of a service, its interface and its implementations. In an equivalence relation,
the two equivalent entities can interchange and be replaced one by the other. The equivalence
relation is reflexive, symmetric, and transitive. In an almost equivalence relation only one entity
can replace the other one. This relation is non reflexive, asymmetric, and transitive. It is based on
sub-typing for syntactic almost equivalence and on sub-concept for semantic almost equivalence.
This almost equivalence relation does not define an order relation between entities, but allow to
relax the equivalence relation and find entities that are functionally similar even if not equivalent.

The relations tackle two main parts of a service: its functional interface and the implementations
of the interface operations, described by the property. Indeed, two services can be equivalent or
almost equivalent to users and applications if they provide the same interfaces but not necessarily
the same interface implementations. And, two services can be equivalent or almost equivalent for
the middleware layer if they provide not only equivalent or almost equivalent interfaces but also
equivalent or almost equivalent implementations. In the rest of this section, we define our interface
equivalence relations, our implementation equivalence relations, and our non-functional QoS degree
of equivalence. All these relations are thoroughly used and explained in our spontaneous service
composition and adaptation described in section 3.3.

3.2.2.1 Functional Interfaces Equivalence Relations

We distinguish between two forms of interfaces equivalence - syntactic and semantic interfaces
equivalences. In the following, we detail the syntactic interface equivalence followed by the
semantic one. We mean by syntactic equivalence, equivalence based on operations signature and
typing. This kind of equivalence is possible between interfaces provided in the same technology
languages. Semantic equivalence concerns the semantic description of interfaces. It can be applied
to interfaces independently of the technology language they are implemented in.

(1) Syntactic equivalence

We define the syntactic interface equivalence using the following operator =syniactic. TWo
interfaces are considered by users and/or applications to be syntactically the same if they provide,

48

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

externally, the same functionalities. We mean by same functional interfaces, interfaces providing
exactly the same operations - the same operations’ number and signatures. Indeed, for an interface
to be invoked as a replacement of another one, its operations need to have the same signatures
as the other interface for a transparent interface call. This condition do not apply upon the
non-functional QoS properties of operations. Two interfaces can be syntactically equivalent even
if their operations do not offer and require the same non-functional QoS properties.

The interface syntactic equivalence =gy ntqctic is based upon an operation syntactic equivalence
which is based on a type equivalence =,,.. We first define what we mean by a type equivalence,
then we explain our operation syntactic equivalence, followed by our interface syntactic equivalence.

Type equivalence
Two anonymous types will be considered equivalent =, if all of the following properties
are true:
e They have the same number of fields
e They have fields of the same syntactic name declared in the same order
e The types of each of the fields are identical
A type system has:
e A set of basic (primitive) types
e A mechanism for defining new types
e Rules for type equivalence - when are the types of two values the same?

e Rules of type compatibility - when can a value of type a be used in a context that expects
type b7

Two principal ways of defining type equivalence exist: structural and name equivalence. In
a name equivalence, every type declaration defines a new type. In a structural equivalence, two
types are equivalent if they consist of the same components. Algol-68 uses structural equivalence,
Standard Pascal and Java use name equivalence, whereas C uses a hybrid form of equivalence.

The equivalence =, defined above is a type compatibility. So the question one can ask is:
when can a value of type a be used in a context that expects type b? a type of value a can replace
a type of value b if a is type equivalent to b, or almost equivalent to b.

We define these two notions of type equivalence and almost equivalence:

DEFINITION 8 — Type equivalence =,

Two types a and b are equivalent (Zyype (a,b) = true) if:

e ¢ and b are name or structural equivalence depending on the programming lan-
guage.

49

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 9 — Type almost equivalence Dype

Two types a and b are almost equivalent (bype(a,b) = true) if at least one of these

conditions is true:

e (a is a subtype of b)

e V (a value of type a can be coerced to a value of type b)

Using this definition of types relations, we define operation and service syntactic equivalence

(=syntactic) and almost equivalence (>syntactic)-
Operations syntactic equivalence

Considering two operation opi and opj, we define when these two operations can be com-

pared.

DEFINITION 10 — Comparable Operations o

We define two operations opi and opj to be comparable (x (opi,opj) = true) if they
have the same number of inputs and the same number of outputs and if it exists a
bijection f over their inputs allowing to compare the inputs parameters two by two.
vkl e {1.|[Inypl}

nopil = [Inop
A (|Outopil = [Outgpl)
N3 fiIng — Ingj, Ying € Ing;, 3 ing € Ingy, f(ing) = ing)

DEFINITION 11 — Operation syntactic equivalence
V {i,j} €N, opi and opj are syntactically equivalent (=gyntactic (0pi,0pj) = true) if:

x (opi,opj) = true

A (namecpt,,, = namecp,,;), names, € ¥*

A (V ink S Inopia (Etype (typeink7f(typeink)) - true)), ke {i"“[nopi”
A (

=type (typeoutopiatypeoutopj) = true)

50

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 12 — Operation syntactic almost equivalence
V {i,j} € N, opi and opj are syntactically almost equivalent (>syntactic(0pi,opj) =
true) if opi and opj are not syntactic equivalent and at least one input or output

parameters have an almost equivalence of types:

x (opi,opj) = true

A (namecpt,,, = namecp,,;), name, € %*

AN (Ving € Inopi, (Crype/ Ztype (tYDCin,, f(typei,)) = true)), k € {i..[Inepi|}
A (Dtype/ =type (typeoutopiatypeoutom) = true)

EXAMPLE 1 Considering the following four operations signatures in figure [3.9:

op1 op2

In = {<f, java.awt.Image>, <s, java.lang.String>} In = {<f, java.awt.Image>, <s, java.lang.String>}

Out={<java.lang.Boolean>} Out={<java.lang.Boolean>}

cpt={<size>} cpt={<size>}

op3 op4
In = {<f, java.awt.image.Bufferedimage>, <s, java.lang.String>} In = {<f, java.awt.Image>}
Out={<java.lang.Boolean>} Out={<java.lang.Boolean>}
cpt={<size>} cpt={<size>}

Figure 3.9: operations specifications

If we consider the two operations opl and op2, the following relations are verified:

(eptopt = cptop = size)

A (Ztype (java.awt.Image, java.awt.Image) = true)

N (Ziype (java.lang.String, java.lang.String) = true)

N (Ziype (java.lang.Boolean, java.lang.Boolean) = true)
These relations implies = (Zgyntactic (0p1,0p2) = true)

Similarly we can conclude to the following relations:
Dsyntactic(op& 0]31) = true
Dsyntactic(op& 0p2) = true

x (op4,opi) = false, Vi € {1,2,3}

51

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Syntactic interfaces equivalence

We define two interfaces to be comparable (o< (ifc;,ifc;) = true) if they have the same
number of operations and if it exists a bijection f over their operations allowing to compare them
two by two:

DEFINITION 13 — Comparable interfaces oc

We define two interfaces ifc; and ifc; to be comparable (o< (ifc;,ifcj) = true) if:

‘Opifci| = ‘Opifcj|
AN (3 f:Opige; — Opige;s Y opr € Opige;, 3 ope € Opige;, f(opr) = opr)

[
DEFINITION 14 — Interface syntactic equivalence
Considering two interfaces ifc; and ifc;. ifc; and ifc; are syntactic equivalent
(Z=syntactic (ifciyifc;) = true) if:
x (ifci,ifcj) = true
A (name;fe, = name;j.;)
A (Vope € Opife;, (Ssyntactic (0P, f(opr)) = true)), k € {1..[Opjsc,|}
|
DEFINITION 15 — Interface syntactic almost equivalence
Considering two services ifc; and ifc;. ifc; and ifc; are syntactic almost equivalent
(Psyntactic(ifcisife;) = true) if:
x (ifci,ife;) = true
A (name;fe, = nameje.;)
A (Vopk € Opife;, (Psyntactic(0pk, flopk)) = true)), k € {1..|Opisc,[}
|

Interfaces can be compared and matched on a subset of operations. This is useful when we
search to replace a service interface by another one for a specific operation and not only for the

service as a whole.

We thus introduce the interface equivalence and almost equivalence on a set of operations:
DEFINITION 16 — Interface syntactic equivalence over a set of operations

Considering two interfaces ifc; and ifcj, 3 Opjige, C ifei, 3 Opige; C ifcy, |Opige,| =

|Opige;| and (x (ifci,ife;) = true) over these operations sets. ifc; and ifc; are
syntactic equivalent over these operations (ESOyZ;Lt aetic (ifcisife;) = true) if:

vopk € Opifcia (Dsyntactic(opkaf(opk)) = true), k€ {1’Oplfcl‘}

52

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 17 — Interface syntactic almost equivalence over a set of operations

Considering two services ifc; and ifej, 3 Opipe, C ifei, 3 Opige; C ifcy, |Opife;,l =

|Opige;| and (o (ifci,ifej) = true) over these operations sets. ifc; and ifc; are
syntactic almost equivalent over these operations (Dgﬁztactic(i feivife;) = true) if:

VOpk € Opz'fcm (Dsyntactic(opbf(opk)) = true), ke {1|Opzfc,|}

EXAMPLE 2 Considering the following three interfaces in figure [3.10

Figure 3.10: interfaces specifications

The two interfaces ifcl and ifc2 verifies the following relations:

(Esyntactic (Oplifclaoplif&) = t"'ue) A (Esyntactic (0p2ifc170103ifc2) = true)

53

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

This implies an equivalence relations between ifcl and ifc2 over a set of their operations

N (_{oplifcla op2ife } (ifel, fe2) = true)

—syntactic

The two interfaces ifc2 and ifc3 verifies:

Dsym&actic(Oplifc?nOplz‘fCQ) = true

This implies an almost equivalence relation over a set of their operations:

= (D{OPQifC3}(ifc3,fc2) = true)

syntactic

The syntactic matching is applied upon interface services defined in the same technology model,
as typing is strongly dependent on the programming language. If services are defined in two
different programming languages, such as Java and C++, a type translation should be done in
order to apply our definition. Indeed, translators are needed in order to verify if the types are
similar but expressed in respective programming languages, such as java.lang. Boolean expressed in
Java and bool expressed in C++. With these translators we can declare that two operations are
syntactically the same but are expressed in two different technology languages. This category can
also be resolved by semantics, as each operation has a semantic description. Providing translators
to all existing programming languages is not really a solution. We adopt the semantic approach
due to the interoperability of semantics based on common ontologies, which are independent of
the employed technologies, and we define the service semantic equivalence for services expressed in
different technology models.

EXAMPLE 3 The two operations defined figure Printing and Printer are syntactically equiv-
alent, as both of them are defined using Java language and have type equivalence over the inputs
and outputs and syntactic equivalence over the concept. The Impression operation is defined using
C++ language and at that stage it is difficult to compare it with the others without translation
mechanisms. We can notice that the two operations Printing and Printer even if functionally
equivalent have different non-functional QoS properties. This aspect is dealt with and explained in
the section 3.2.2.2.

(2) Semantic equivalence

If the syntactic interface equivalence considered type equivalence, we define the semantic
interface equivalence =gemantic Upon semantic operation equivalence which itself is defined upon a
concept matching M oncept With concepts belonging to a defined ontology.

o4

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Concept matching

The matching of two concepts belonging to the same ontology has been widely studied.
We define our matching relation M oncept between concepts belonging to the same ontology.

n1 n2

n11 n12 n21 n22

Figure 3.11: An ontology example

A concept n belonging to an ontology o (figure , can provide all its immediate sub-
concepts n1 and no or one of its sub-concepts ni or ny. This distinction depends strongly on
the ontology definitions and providers. If some research such as Paolucci [Paolucci et al. 2002]
made the assumption that by selecting a concept n, we implicitly suppose that it provides all
its immediate sub-concepts, others made the other assumption that by selecting a concept n, it
provides at least one of its immediate sub-concepts, but not necessarily all of them. Consider
the set {ni,ng,..,n,} of all the sub-concepts of a concept n in an ontology o, the assumption
of Paolucci [Paolucci et al. 2002] is formalized as follows: n =,0pide (71 A N2 A ... A ny) which
means that n can replace nl, n2, etc. Others, do not make strong assumptions as this and
suppose that a concept n provides one or more of its sub-concepts but not necessarily all of them,
N =provide (M1 VN2V ...V ny,). We fall into the first category, stipulating that a super-concept
offers what its sub-concepts offer, and hence can replace them.

DEFINITION 18 — Concept matching Mconcept

Defining n and m, two concepts belonging to the same ontology o. We define the four
values of concept matching Meoncept inspired from Paolucci [Paolucci et al. 2002] as
follows:

M oncept(n,m) Ezact : If n and m are equivalent concept
Plugln : If n is a super-concept of m
Subsume : [f n is a sub-concept of m

Fail : If n and m do not verify the above conditions

95

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

EXAMPLE 4 Using our ontology example figure[3.13, we give an example of Meoncept-

document

content URI

——

paper electronic URL path

Figure 3.12: A document ontology example

Example | Mconcept("content”, "electronic’) = PlugIn

(

M oncept("document”, "URL") = Plugln

M oncept("paper”, "document”) = Subsume
(

M oncept("content”, "path”) = Fail

Semantic operations equivalence

Using this concept matching we define our operation followed by the interface semantic
matching values.

First we explain how we match two operations op; and op;.

V {i,j,l,k} € N, we define the semantic matching of two comparable operations op; and op;
x (op;,op;) = true), Mgsemantic(0Di,0p;), considering the semantic matching of their concepts,
] j g g

inputs and outputs.

We can quickly realize that the semantic matching of these three items - inputs, outputs,
and concepts - can be different, as the concept matching can take multiple values. In syntactic
equivalence, the condition was to have a strict syntactic equivalence for the three items. In semantic
matching, the three items can range from FExact matching to Fail passing by the Plugln and
Subsume values.

We define the different values a semantic matching between two operations op; and op; can
take as follows:

56

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 19 — Msemantic(opi’ OPj)

Two operations op; and op; verifying (o< (op;,op;) = true) are Exact semantic
matching if all the matching values between concept, inputs and output are Ezact.
VEkeN:

(Mconcept (nsemanticcptopi 3 nsemanticcptopj) = EwaCt)

A (V ing € Inopiv Mconcept(nsemanticmk,f(nsemanticmk)) = ExaCt)

A (Mconcept (nsemanticoutopi s nsemanticoutopj) = El'aCt)

They are Plugln semantic matching if they are not Fxact matching and all
the matching between concept, inputs or output values are Exact or Plugin. ¥V k € N:
Msemantic(opi, opj) # Exact
A (Mconcept(nsemanticcptopi7nsemanticcptopj) € {EJECLCt N Plu.gln})
A (Ving € Ingp,, Mconcept(nsemamicmk,f(nsemanticmk)) in {FEzxact V Plugln})
A (Mconcept (nsemanticoutom s nsemanticoutopj) S {ExaCt vV Plugln})

They are Subsume semantic matching if they are no Fxzact or Plugln match-
ing and at least one matching value between concept, inputs or output is Subsume and
no Fail matching value is found between outputs, concepts, and the corresponding
comparable inputs. V k € N:

Msemantic(opia Opj) 7é Exact

A (Msemantic(opiaopj) 7é Pluyln)

A (Mconcept(nsemanticcmom7nsemanticcptopj) - _‘(FaZl))

A (V ing € Inopiv Mconcept(nsemanticmk’f(nsemanticmk)) = _‘(FC”JZ))

A

Mconcept (nsemanticoutopi , nsemanticoutopj) = _‘(FC”JZ))

They are Fail semantic matching if they have different inputs or outputs num-
bers or at least one semantic matching value between concepts, inputs or outputs is
Fail. ¥V {k,l} e N:

(|In0pi’ #* u”om’)

V (|Outop,| # [Outop,])

vV (Mconcept (nsemanticcmom) nsemanticcptopj) = FaZl)

\ (El my € Inopiv Ving € Inopja Mconcept(nsemanticmkansemanticml) = Fall)

\/(Mconcept (nsemanticoutopi s nsemanticoutopj) = F(I'Ll)

o7

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

EXAMPLE 5 Considering the three operations defined in figure[3.13

Printing Impression
In = {<f, java.io.File, «document »>} In = {<s, char*, «path »>}
Out={<java.lang.Boolean, « state »>} Out={<bool, « state »>}
Cpt={<print, « printer »>} Cpt={<println, « printer »>}
Npgn={(nbPage,60,>), (price,10,<)} Npgn={(nbPage,100,>), (price,20,<)}
Npgl={(access, « wifi »)} Npql={(access, « wireless »)}
Printer

In ={<f, java.io.File, «<URI»>}
Out={<java.lang.Boolean, « state »>}
Cpt={<print, « printer »>}
Npgn={(nbPage,10,>), (price,2,<)}

Npgl={(access, « bluetooth »)}

Figure 3.13: Three services operations specifications

The semantic matching between these operations give the following values:

Meoncept (Printing, Impression) = Plugln
M oncept (Printing, Printer) = Plugln

M oncept (Impression, Printer) = Subsume
M oncept (Impression, Printing) = Subsume
Meoncept (Printer, Printing) = Subsume

M oncept(Printer, Impression) = Plugln

58

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 20 — Operation semantic equivalence

We define two operations op; and op; to be semantically equivalent =gemantic if:
(Esemantic (OPz’, Opj) = tTU@) < (Msemantic(opi’ OPj) = E$CLC7§)

The semantic operation equivalence =gemantic 1S reflexive, symmetric, and tran-
sitive. As for the syntactic operation equivalence, the semantic equivalence satisfies

the conditions an equivalence relation R needs to fulfill.

DEFINITION 21 — Operation semantic almost equivalence

We define two operations op; and op; to be semantically almost equivalent >gemantic if:
(Dsemantic(opi7 Opj) = true) ~ (Msemantic(opia Opj) = Plu.gln)
The semantic almost equivalence is non reflexive, asymmetric, and transitive.

This relation of almost equivalence specifies that opi is equivalent to opj and can
replace it but that the contrary is not true. opj can not always replace opi.

ExXaMPLE 6 Coming back to our example in figure where we had these matching values
between the three operations Printing, Impression, and Printer:

M oncept (Printing, Impression) = Plugln
M oncept (Printing, Printer) = Plugln
M oncept(Impression, Printer) = Subsume
M oncept(Impression, Printing) = Subsume
M oncept(Printer, Printing) = Subsume

M oncept (Printer, Impression) = Plugln

we can conclude the following almost equivalent relations:

>(Printing, Impression) = true
>(Printing, Printer) = true
>(Printer, Impression) = true

99

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Semantic interfaces equivalence

As for operations we define the semantic matching between two interfaces ifc; and i fc;:

DEFINITION 22 — Msemantic(ifcia ’iij)

Two interfaces ifc; and ifc; are Exact semantic match if oc (ifc;,ifc;) = true and:

\V/Opi € Opifcia Msemantic(opi7f(0pi)) = Ezact

They are PlugIn semantic match if o< (ife;,ifc;) = true, and:

Msemantic(ifci,ifcj) ?é FEzxact
N (Yopi € Opife;, Msemantic(opi, f(opi)) € {EzactV Plugln})

They are Subsume semantic match if o« (ifc;,ifc;) = true, ifc; and ifc; are
not Fxact nor Plugln semantic match and:

Msemantic(ifcia iij) 7’é Exact
A (Msemantic(ifchifcj) 7é PluQIn)
N (Yopi € Opife;, Msemantic(opi, f(opi)) € {EzactV Plugln V Subsume})

The equality over the number of operations is not required. As a Subsume re-
lation between services is not used to define equivalence or almost equivalence
relations.

They are Fail semantic match if:
x (ifei,ife;) = false
\% (El op; € Opifcia VOpj € Opif(:j; Msemantic(opiyopj) = FC”Z)

It is sufficient to have only one operation op; of ifc; that do Fail match with

any operation op; of ifc; to declare that the two services matching fails.

Based on these interface semantic matching definitions, we define the interface semantic equiv-
alence and almost equivalence.

60

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 23 — Interface semantic equivalence

We define two interfaces ifc; and ifc; to be semantically equivalent =semantic if:
(Esemantic (ifci,iij) = true) = (Msemantic(ifciyifcj) = ExaCt)

The semantic equivalence =gemantic is reflexive, symmetric, and transitive.

DEFINITION 24 — Interface semantic almost equivalence
We define two services ifc; and ifc; to be semantically almost equivalent bgemantic if:

(Dsemantic(ifcivifcj) = true) = (Msemantic(ifcivifcj) = Plu.gln)
As for operations, the semantic almost equivalence is non reflexive, non sym-

metric, and transitive. This relation of almost equivalence specifies that ifc; is
equivalent to ifc; and can replace it but that the contrary is not true. ifc; cannot

always replace i fc;.

ExaMPLE 7 Considering the three interfaces and their semantic descriptions in figure [3.33:

The semantic matching between their different operations gives the following values:
x (ifel,ife3) = true

A (Mconcept(oplifclyOplifc3) = Plu.gln)
A (Mconcept(opzifclaOp2ifc3) = Plu.gln)

61

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Figure 3.14: Three services operations specifications

We can implies = (Ssemantic(ifcl,ifc3) = true)

The two interfaces ifcl and ifc2 are not comparable as they do not have the same number
of operations. Nevertheless, some of their operations are PlugIn semantic.

To resolve the issue brought in example 7. We define the matching over a set of operations for
two interfaces ifc; and ifc;.

62

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 25 — M9P (ifcivifey)

semantic
Two interfaces i fc; and ifc; are Exact semantic matching over a subset of operations

Op, if:
x (ifei,ifej) = true
A (Op C Opifcia Vopi € Op, Msemantic<0pivf(0pz’)) = ExaCt)

Two services ifc; and ifc; are Plugln semantic matching over a subset of op-
erations Op, if:

o (ifci, ifcj) = true
O . .
Mseglantic(lfchlfcj) #+ FExact

AN (Op C Opife;s Yopi € Op, Mgemantic(ops, f(opi)) € {ExactV Plugln})

We thus define interface semantic equivalence and almost equivalence between interfaces over
a subset of operations:

DEFINITION 26 — Interface semantic equivalence over a subset of operations

We define two interfaces ifc; and ifc; to be semantically equivalent over a subset of
_Op

operations Op, =, ...

(=9r (ifciife)) = true) < (MOP (ifeiyifej) = Ezact)

—semantic semantic

[|
DEFINITION 27 — Interface semantic almost equivalence over a subset of operations
We define two services i fc; and i fc; to be semantically almost equivalent over a subset
of equivalence Op, Dsoeﬁnantic:
O ifeiife) = M ifeife;) = Plugl
(Dsemantic(zfcl’ ZfCJ) - true) A (semamﬁic(lfcl7 ch]) - ug n)
|

ExXaMPLE 8 Coming back to our example in figure |3.33 The semantic matching between the
different operations of ifcl and ifc2 gives the following values:

x (ifel,ife3) = true
A (Mconcept(oplifclyOplifCQ) = Plu.gln)
A (Mconcept(opzifclaOp3if02) = Plu.gln)

63

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

. . . Life1, 2ife . .
From these matching values, we can implies = (ngzaét;c e 1}(zj"cl,zj"cS) = true)

The two interfaces ifcl and ifc3 are almost equivalent upon the two operations of ifcl.

This equivalence and almost equivalence over subsets of operations is useful for service adap-
tation issues, as a service can be replaced by another one if certain operations are specified to be
required at a given time. This aspect is detailed in section 3.3.3.

A ranking of the semantic matching values need to be introduced. This ranking will help
ordering services that have semantic almost equivalence with different concept values for the
respective operations’ inputs, outputs and concepts. It is also used to rank interfaces and
operations that have Subsume semantic matching. This operations’ ordering allows users and
applications to choose services that best suit their requirements at a given time, and re-adapt their
choice if other services that have a closer semantic equivalence appear. We introduce a semantic
distance Dgemantic between two interfaces. It calculates the distance between two interfaces se-
mantic descriptions. The more this value is closer to zero the more these two services are equivalent.

Semantic distance

DEFINITION 28 — Concept semantic distance

We first define a normalized concept distance Dconcepr between two concepts n and m:

Deoncept(n,m) : 0 if Meoncept(n, m) = Exact
0.2 if Meoncept(n,m) = Plugln
0.8 if Meoncept(n,m) = Subsume
Lif Meoncept(n,m) = Fail

The more the distance is close to zero, the best is the value of the semantic
matching between two concepts. An Exact value is preferred to a PlugIn one, which

is preferred to a Subsume one.

64

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 29 — Operation semantic distance

We define the semantic distance between two comparable operations opi and opj
(x (opi,opj) = true): (Dsemantic(0pi,opj), i, € N). This semantic distance is the
sum of the ponderated concept distance of the operation concept, inputs and output

semantic description:

w1 *DConcept (nsemanticcpwpi y Nsemanticeptop;)+w2 *DConcept (nsemanticoutopi s Nsemanticout .)"’

)

[Tmopi|

k=1 (wk * DC’oncept(nsemanticmkom) nsemanticf(mkopi)

where), n(wi) = 1
wi corresponds to the weight we wish to give to the concept, inputs and output. When
matching two operations, the focus may be put on inputs, outputs parameters or on

the concept. wi allows to ponderate the ranking of operations.

DEFINITION 30 — Interface Semantic Distance
The semantic distance between two comparable interfaces (Dsemantic(ifci,ifci) i,j €
N) is the sum of all the semantic distance between their comparable operations,
ponderated by a weight allowing to focus on some operations rather than others.

Opite,
|]€:P1f 3 (wk * Dsemantic(OPkifcm f(opklfcz)))

EXAMPLE 9 We come back to our example and calculate the semantic distance Dgsemantic of our

two interfaces:

Dsemantic(impression, printing) = 0.8 | Deopcept("printer”) printer”) = 0
D concept ("location” . document”) = 0.8
Doncept("state”) state’”) =0
D semantic(printing, impression) = 0.2 | Deopcept("printer”) printer”) = 0
Deoncept ("document”) location”) = 0.2
Deoncept (" state” " state”) = 0

The overall value of Deoncept(printing, impression) < Deopcept(impression, printing).

In our semantic distance calculation, we gave the three items of an operation - inputs, output,
and concept - the same importance. We can ponderate the semantic distance by introducing weights
to each of the operation items.

As we can see the interface semantic equivalence is richer than the syntactic one. Interfaces are
considered equivalent to a certain degree. Our semantic distance, allow to find, focusing on the
priority an application want, the most suitable service as an equivalent to another one. This aspect

is crucial in pervasive environment adaptation.

65

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

The equivalences introduced so far concern the interfaces of services. If two services can pub-
lish the same interface, they can provide different implementations and different non-functional
properties. Next section, we define the equivalence upon the property describing the implementa-
tions followed by a metric to calculate the non-functional QoS equivalence degree for syntactic and
semantic interface equivalence.

3.2.2.2 Property Implementation Equivalence Relations

We defined our syntactic and semantic interface equivalence and almost equivalence relations. T'wo
services are composed not only of a functional interface but also of the implementations of these in-
terfaces. In this section, we define the implementation equivalence and almost equivalence relations.
We later motivate our choice of studying these relations. An implementation is described by the
functional property of a service Pr. The properties describe the implementations of the functional
interfaces and different properties mean different implementations of the services interface.

So, beside the syntactic and semantic interface equivalence relations defined above, a property
equivalence and almost equivalence relations are introduced. A property pr,; of the operation is a
composed tuple {< semantic, value >}Jr where semantic is a tuple < o,n > of an ontology o € O,
n € N a set of concepts belonging to the ontology set o, and value an expression denoting whether
the service is atomic or integrated which means composed of several atomic services.

DEFINITION 31 — Comparable properties o

We define two properties Pr; and Pr; to be comparable (o< (Pr;, Prj) = true) if they
have the same number of tuples and if it exists a bijection f over their tuples allowing
to compare the tuples two by two. V k,l € {1..|Pr;|}

|Pri| = [Pr|
AN@Ef:Pri — Prj, Vpry € Prj, 3pry € Pry, f(pre) = pri)
| |
DEFINITION 32 — Property equivalence
We define two properties Prl and Pr2 to be equivalent (=p, (Prl, Pr2) = true) if
they are comparable and for each tuple prg in Prl
Mconcept (nse’rna’rztic,,,«lC y nsemanticf@rk)) = Ezact
N (Esyntactic (valuepy,,value,y,)) = true)
| |

DEFINITION 33 — Property almost equivalence

We define two properties Pr; and Pr; to be almost equivalent (>p,(Pr;, Prj) = true)
if they if they are comparable and for each tuple pry in Pr;:

Mconcept (nsemanticp,«k ’ nsemanticf<p,.k)) € {Eacact, PlugIn}

A (Esyntactic (valuepy, ,value,y,)) = true)

66

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

ExaMpPLE 10 Considering the following properties for two interfaces:

Pr; = < n2, integrated > (< n22, atomic >)

Pr; = < n2l, integrated > (< n22, atomic >)

Pri = < nl, integrated > (< n22, atomic >)

Pr; = < n2, integrated > (< n22, atomic >)(< n2l, atomic >)

Using the definition relations introduced above we can compute the following values:

o< (Pry, Prjsin) = false
>pr(Pri, Prj) = true

Mconcept(PriaPrk) = fail
M oncept(Prj, Pry) = fail

As done earlier, we introduce the semantic distance to evaluate the equivalence distance between
properties Pr; and Pr;. This metric is applied if previously the two properties are computed to be
equivalent or almost equivalent.

DEFINITION 34 — Property Semantic Distance

The semantic distance Dgemantic(Pri, Prj) between two properties Pr; and Pr; that

valent is: S~
are almost equivalent is: et (Dconcept(nsemamicmk , Nsemantic f(pm))

EXAMPLE 11 If we calculate the property semantic distance for the two properties Pr; and Pr;
verifying (>py(Pr;, Prj) = true) we obtain:

Dgemantic(Pri, Prj) = Deoncept(n2,1n21) 4+ Deopeept(n22,n22) = 0.2 + 0 = 0.2

If Pr; is almost equivalent to another property Pr,, the semantic distance will express how close is
the similarity and allows to choose between the two properties Pr; and Pr, which one is closest to
PTZ'.

Let Pr, = < n2l, integrated > (< n221, atomic >)

We have (>p.(Pr;, Pr,) = true) and:

Dgemantic(Pri, Pry) = Deoncept(n2,1n21) + Deopeept(n22,n221) = 0.2 + 0.2 = 0.4

Pr; fits better Pr; than does Pr, as (Dsemantic(Pri, Prj) < Dsemantic(Pri, Pr2))

The more the semantic distance is closer to zero the best is the equivalence between the prop-
erties.

When comparing two properties, we first compare if they are equivalent or almost equivalent.
For almost equivalent properties, we can calculate the semantic distance to order between the
different almost equivalent properties.

67

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

3.2.2.3 Non-Functional QoS Equivalence Degree

Services can be syntactically and/or semantically equivalent, almost equivalent, or having Subsume
matching relations. These equivalence are based on the functional aspect of services. Services can
offer the same functionalities but with different non-functional QoS properties. We will define a
metric that measures the non-functional QoS degree of equivalence. This metric allows to assign a
normalized degree that measures the degree of non-functional QoS similarities between two equiv-
alent, almost equivalent, or Subsume matching services. These degrees are used to choose between
diverse services providing different non-functional QoS properties, but offering similar functionali-
ties.

The non-functional QoS of an operation is defined as follows:

DEFINITION 35 — non-functional QoS properties
Consider a finite set of grammatical alphabet 3, ontologies O, concepts IN belongings
to these ontologies O, non-functional QoS properties Np, quantitative non-functional
properties Npgn, and qualitative non-functional properties Npgy. Considering an
operation op we define its non-functional QoS as follows:

Np =< Np,. Npon >
Npgp = {nplor, np2qrL, .- npkqr}t, k = |NPgLl
Npon = {nplon, np2¢n, .. npton}, k = |[NPgn|
npQrL =< name, semantic >, name € X*
npon =< name, numericValue,operator >, name € X* & numericValue € R
operator = {<, >, <, >}
semantic=<o,n>, 0 € O, n € N
operator specifies the order applied to numericValue. For {>, >} the greater

the numericValue is, the best is the QoS property for the service runtime execution.
For {<, <} the smaller the numericValue is, the best is the QoS property for the

service runtime execution.

The non-functional equivalence degree QoSpegree(0pi, opj) between two functional equivalent
operations is evaluated upon their quantitative and qualitative properties similarities. Two func-
tional equivalent operations offer the same functionality but not necessarily the same non-functional
QoS properties. The Q0Spegrec(opi,opj) evaluates the degree of similarities of two operations
opt and opj concerning their non-functional QoS properties. We suppose that 3 f : Npy —
Npop; where ¥ npkop; € Npopj, 3! npkopi € Npopi, f(npkopi) = npkopj. We suppose
V k € N, npkey and npk,,; deals with the same non-functional QoS property. If npk,,; is
a quantitative non-functional QoS we have npk,,; also a quantitative non-functional QoS and
namenpk

namenpk If npkop; is a qualitative non-functional QoS we have npk,,; also a

opj ”
qualitative non-functional QoS and name,y

opi

= nameppji

opi opj *

68

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 36 — Q0Spegree(0pi, opj)
Considering two operations opi and opj, we define the degree of equivalence between
the two operations QoSpegree(0pi, opj) as a function that measures how close is opj
from opt in terms of non-functional QoS. We consider the non-functional properties
of opi, NF,,; and calculate as follows the degree of equivalence opj has upon these
properties:

o Npop:
QOSDegree(Opza Op.]) = ‘k:ﬁ vl Wi, * deg(npkopi7 npkopj)

where, wj is the assigned weight for a particular non-functional QoS property
with the following conditions Z'kjiq"pi‘(wk) = 1. The more wy is closer to zero,
the more important is the property Npk. This ponderation allows to decide when
searching for equivalent services if certain non-functional QoS properties are more
important than other for the required service replacement. deg(npkopi, npkop;) are
normalized values between 0 and 1 corresponding to the equivalence degree between
npkopi and npkep;. These values are calculated using the z-score or standardization
of the npk values for quantitative properties and semantic distance for qualitative

properties.

We define deg(npkopi, npkop;) as follows:
o deg(npkopi, npkopj) = deg(npkqn,,;; npkqn,,;) for the quantitative properties.
e deg(npkopi, npkop;) = deg(npkqLr,,., npkqL,,;) for the qualitative ones.

We define next how we calculate these two degrees.
DEFINITION 37 — deg(npkgn,,;, "PkQN.,,;)
deg(npkqn,,;, "PkQN,,;) = [n(npkgn,,.) — n(npkgn,,;)l
We define n(npkgn) as the normalization of z-score value of npkgn for quantitative
non-functional QoS.

DEFINITION 38 — n(npgn)

Considering npgon =< name, numericV alue, operator > we define n(npgn) as follows

if operatornpgy is' <': 0if z-score(npgn) < —2

1if z-score(npgon) > 2

(z — score(npgn))/4 + 0.54if 2 > z-score(npgon) > —2
if operatornpgy is' >': 1if z-score(npgn) < —2

0if z-score(npgn) > 2

0.5 — (z-score(npgn))/4if 2 > z-score(npgon) > —2

69

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

For < the numericValue is the best when it is the smallest. n(npgn) is closer to zero for the
smallest value of numericV alue and closer to one for the bigger value of numericValue, and vice
versa for >.

The z-score of a quantitative property mpgy, indicates how far and in what direction, the
property deviates from its distribution’s mean, expressed in units of its distribution’s standard
deviation. We use the z-score standardization in order to provide a way of comparing all the
different non-functional QoS by including consideration of their respective distributions.

DEFINITION 39 — z-score(npon)

Considering the quantitative npgy, its corresponding z-score is:
z-score(npon) = (numericValuenp,y — p(numericValuenp,y))/o(numericV aluenp,)

where, p(numericValueyp,,) is the mean of the values of npgy, and

o(numericV alueny,,) is the standard deviation of npgn-.

In normal distribution we can distinguish that the 95% of z-score(npgn) values are comprises
between —2 and 2. Based on this, n(npgn) calculates a value between 0 and 1 taking into ac-
count the nature of quantitative non-functional QoS properties. Indeed the operatoryy,, indicates
whether the properties are stronger with greater values, or with smaller values.

If for the quantitative non-functional QoS properties, we used z-score and normalization to
calculate the degree of similarities between two properties, for qualitative non-functional QoS
we use the semantic distance to compare the concepts of the qualitative properties npgr. The
semantic distance returns a normalized value between 0 and 1.

DEFINITION 40 — deg(npkQL,,;, "PkQL,,;)

Considering npkqr,,, the qualitative non-functional QoS of the operation. We seek

opi
to find the best equivalence for it from a set of equivalent operations. Considering
npkqL,,; =< name,semantic > the qualitative non-functional QoS of the other

operations. we define deg(npkqL,,;, nPkqQL,,;) as follows:

deg (nkaLopi , npk:QLopj) = Dsemantic (nsemanticnkaLOpi) nsemanticnkaLOpi)

EXAMPLE 12 Considering the three operations defined in figure[3.13. Considering the Printing op-
eration, it is syntactically equivalent to Printer and semantically equivalent to Impression. We cal-
culate the non-functional QoS degree of equivalence to determine which of Printer or Impression
replace the best Printing.

First we calculate the values that we need for our degree calculations. We detail the calculations
for nbpage.

70

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

pu(nbpage) = 56.66

o(nbpage) = +/((60 — 56.66)2 + (100 — 56.66)2 + (10— 56.66)2) = 3 = 36.84
z — score(nbpageprinting) = (60 —56.66) + 36.84 = 0.09

z — score(nbpageimpression) = (100 —56.66) + 36.84 = 1.176

z — score(nbpageprinter) = (10 —56.66) + 36.84 = —1.26

n(nbpageprinting) = 0.477

n(nbpageimpression) = 0.206

n(nbpageprinter) = 0.816

n(priceprinting) = 0.515
n(priceimpression) = 0.867
n(priceprinter) = 0.186

PP
Dsemantic(accessprinting, 6CCeSSprinting) = 0, Meoncept(wifi'/ wifi’) = Exact

_ 1o S
D semantic(accessprinting, ACCESSimpression) = 0.2, Meoncept (wireless’/ wifi’) = Plugln
_ / 1/ 3 _ .
Dsemantic(accessprinting, acC€SSprinter) = 1, Meoncept('bluetooth' wifi') = Fail

The Q0Spegree 0f the three operations are:

Q0Spegree(Printing, Impression) = wl * (In(nbpageprinting) — 1n(nbpageimpression)|) +

w2 * (\U(PTiCGprmtmg) - n(priceimpression)b + w3 * (Dsemantic(accesspm’ntinga accessimpression))
Q0Spegree(Printing, Impression) = wl * 0.27 + w2 0.35 + w3 % 0.2

Q0Spegree(Printing, Printer) = wl x (In(nbpageprinting) — n(nbpageprinter)|) + w2 *
(|77(p?”i06pm'mmg) - n(priceprmter)’) +W3*(Dsemantic(accessprinting7accessprinter))

Q0Spegree(Printing, Printer) = wl % 0.33 + w2 % 0.33 + w3 *1

If we suppose the three non-functional QoS properties of the same importance wl + w2 + w3 = 1,
we obtain: QoSpegree(Printing, Impression) = 0.27, and Q0Spegree(Printing, Printer) = 0.55.
The Impression operation offers non-functional QoS that are closer to Printing than Printer if

we assign the same weight to the three non-functional properties.

3.2.3 Services Composition Relations

After the service equivalence relations definitions, we define the service composition relations. Com-
position relation determines the degree of complementarity for a composition between two services.
A service is considered to be composable with another service, if the functionality it produces can
be consumed by the other service, and if the non-functional properties are compatible. Combin-
ing two services together means combining their functional interfaces, and by that at least one of
their operations. The output produced by the operation of one service is used as an input for the

71

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

operation of another service. To be able to compose services, non-functional QoS need to be taken
into account. We distinguish two kinds of operations’ composition compatibility: syntactic and
semantic composition.

We illustrate our composability relations definitions upon the following example of two opera-
tions that take a picture via a webcam and that change the dimension of a given image file:

Take photo Change dimension
In = {<void>} In = {<s, java.awt.Image, «Image »>}
Out={<java.awt.Image, «Image»>} Out={<java.awt.Image, « Image »>}
Cpt={<getSnapShot, « take picture »>} Cpt={<reSize, « resize picture »>}

Npan={(qualityCoefficient, 1.0, >)(size, 0.5MB,>)} Npgn={(qualityCoefficient, 1.0, >) (size, 1MB, >)}

Npal={(access, « wifi »)} Npgl={(access, « wireless »)}

Figure 3.15: Two services operation specification

3.2.3.1 Functional Services Composition Relation

We first begin by defining the functional service composability relation. This relation is upon the
functional interfaces of services. We distinguish two kinds of composability, the syntactic one and
the semantic one.

Syntactic composition relation

Two services are syntactically composable (Ogyntqactic) if they have two syntactic composable
functional interfaces. Two functional interfaces are defined to be syntactic composable if they
have at least two syntactic composable operations. Two operations are syntactic composable if the
output of one operation is of the same type as one input of the other operation (cf. fig . For
a syntactic composition relation, we suppose that the services use the same protocol of interaction
as this compatibility is based on type matching.

DEFINITION 41 — Syntactic service composability

si and sj are syntactic service composable (Ogyntactic(st,S7) = true) if:
3 opk € Opg, Fopl € Opsj, (Osyntactic(opk,opl) = true)
A (Zsyntactic (protocols;, protocols;) = true)

72

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 42 — Syntactic operation composability

opi and opj are syntactically composable (Osyniqctic(0pi, opj) = true) if:

Bt e L. (Inopil}, (Seype (typCin,,;» tYPCoutL,,;) = true) v
(Dtype (typeoutopp typeinlopj) = true)

Figure |3.16[shows two syntactic composition compatible operations op: and opj. For that opi
to be composable with opj, the type output of opi need to be equivalent or almost equivalent with
the type of one input of opj. By this way the two operations can be combined.

ini (Input
sen?:r:?ii} ey out Output) {WPe
» — .
. | semantic
name 7 IN* (Input) out (Output) type |
type (E— | Cpt
semantic | Cpt semantic | (concept)
1 (concept) 1 o
| opi
name name !
type }_> type } »
semantic | IN« (Input) semantic J INi (Input)
/_H name
name semantic
semantic

Figure 3.16: Combining compatible operations: opi & opj

Composing the two operations opi and opj creates a new operation with a new signature as
showed figure The new operation inputs are a combination of the opi and opj inputs, and its
output the output of opj.

name YiN' (opj)
semantic}
name M out (opi) type
type 1
semantic) Cpt semantic
1 (concept)
| opi Cot out (opj) type
name (Conge t) Cpt » 4 semantic
type s——> P! (concept)
semantic J in« (opi) DeNCR) opj
name
type - g
semantic In: (opj)

name new op
semantic new op

Figure 3.17: new resulting operation

The new resulting signature operation in figure [3.17]

73

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

typerm = typerm,,, U (typern,,; — {typeinky,; 1) (Stype / Ptype (FYPEOULopis tYPEInk,,;) = true)
typeOut = typeOutopj
Cpt =< nameyp; ® nameqp;, semanticyp; ® semanticyp; >

The non-functional aspects are explained in section 3.2.3.2.

ExXaAMPLE 13 The operation opl : Takephoto takes a picture using a webcam device. The
operation op2 : Changedimension resize a given image and returns an image. Both operations are
written using the Java language. Takephoto and Changedimension are composition compatible as
the Outrakephoto 15 of the same type of Inchangedimension- 1This new operation takes a picture and
resize it. The new operation specification is:

typern = typern,, U (tYperny, — {typemlopz}) = woid

typeout = tYpeout,,, = java.awt.I'mage

Cpt =< GetSnapShotreSize, "takepictureresizepicture” >

The new resulting operation signature:

signatureOppey : | GetSnapShotreSize() — java.awt.Image

Semantic composition

Two services are semantically composition compatible (Osemantic) if they have two compos-
able semantic description of their functional interfaces. Two functional interfaces are defined to be
semantic composable if they have at least two semantic composable operations. Two operations
are semantic composable if the semantic description of the output of one operation is semantically
equivalent to the semantic description of one input of the other operation. At the difference with
the syntactic composability, the semantic one does not impose services to have the same protocol
of interaction as the semantics aim to resolve the interoperability problem.

DEFINITION 43 — Semantic Service Composability

si and sj are semantically composable (Osemantic(si, sj) = true) if:

dopi € Opg, Jopj € Opsj7 Osemantie(opiaopj) = true

|
DEFINITION 44 — Semantic operation composability
opi and opj are semantically composable (Osemantic(opi, opj) = true) if:
(Bl € {1 [Inop;l} , (Msemantic(nsemantici,, » isemanticour,,,) € {Ewact, PlugIn)}
[]

74

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

The output produced by opi can be transparently consumed as an input for the operation opj
if the semantic equivalence between their two concepts is Ezact or Plugin. In case of a Subsume
equivalence, the output can fail to provide the requirements for the input.

Figure [3.18) shows two composition compatible operations opi and opj.

Combining the two operations opi and opj creates a new operation with a new semantic de-
scription as showed figure [3.18

name ~iN1 (opj)
type

name }m. out (Opi) { semantic
— >

N I

semantic | Cpt type

| (concept) [

! op1 Cot out (opj) type
name (Conge H Cpt — ™ semantic
ypo b- P (concept)

semantic | iN« (0pi) new op o

name
type >
semantic Ini (opj)

AL

name new op !
semantic new op

Figure 3.18: new resulting operation

The new resulting semantic operation description in figure [3.18

Nsemanticr, — nsemantiqnopi U (nsemantiqnom - {nsemanticmkom })

Nsemanticoy: — nsemanticomom

Cpt =< namep; ® namegp;, semanticyp; ® semanticyp; >

) € {E=xact, Plugin}).

where, (Mconcept (nsemanticmkopj s nsemanticoutopi

EXAMPLE 14 We illustrate the composition compatibility using our example in figure[3.15
The new operation specification is:

_ _n "
NsemanticIn = MsemanticInop U (nsemantidnopg - {nsemanticlnlopg }) = ‘none
_ _ny "
NsemanticOut = MsemanticOutops — Figure
Cpt = {< GetSnapShotreSize,” takepictureresizepicture” >}

The new resulting operation semantic description:

"takepictureresizepicture” ("none”) — " Figure”

we can note that the syntactic operation composability and the semantic one tackle different
levels of services compatibility. The syntactic one allows sub-types to replace their types, whereas

75

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

semantic allows super-concept to replace their concepts (based on Paolucci [Paolucci et al. 2002]
definition). We can stipulate that combining these two kinds of composability offers a large spec-
trum to compose services together.

3.2.3.2 Non-Functional QoS Services Composition Relation

If two operations are functionally composable (syntactically or semantically), they can present
incompatible non-functional QoS properties that prevent from establishing a valid composition
relation between the concerned operations. The non-functional properties we are concerned with
are those that describe and specify the output and the input that are combined together. Indeed,
the composition compatibility relation is built upon the condition that the output of one operation
is consumed as an input for the other operation. The non-functional QoS properties dealing with
these parameters need to be compatible.

0n= in: (opj)
a
e — "
< < in i .
e = M» out (opi) NP QoS (g =
[SRe) - > : o
B a ! equivalent gl
c o 1 Cpt ==
2% ' 1 (concept) SO
opi oo
S g 1 P! Cpt _— *g 15}
Z3a — > (concept) 53
in« (opi) opj TE
0= 1 s 38
o Zo
ags ! s
® £ !
C oy D |
oo
=
23 ,
; E N (opj)
=%
S o — R
zZ3 A

Non-functional QoS
properties of Cpt (opi and opj)

Figure 3.19: new resulting operation non-functional QoS properties

We define the QoS compatibility between two non-functional QoS properties that express the
same property.

DEFINITION 45 — Compatibleg,s for npgn
npign and npjon are compatible (Compatiblegos(npign, npjgn) = true) if:
NAMEnpiqy = NAMEnpjoy
A (numericValuenpigy C numericValuenpjqy)

C is {< v <} for numericValue € R or C for numericValue intervals in
R.

76

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 46 — Compatibleg,s for Npgn
Npign and Npjon are compatible (Compatibleg,s(Npign, Npjon) = true) if:

|Npign| = |[Npjon]|
Vnpign € Npign, 3! npjon € Npjon, Compatiblegos(npion,npign) = true
npigr, and npjor, are compatible (Compatibleqos(npiqr, npjor) = true) if:

NaMenpio, = NAMeEnpjo,
A (Mconcept (nsemanticanL) nsem(mticnijL) € (E$a6t7 Plu.an»

| |
DEFINITION 47 — Compatibleg,s for Npgr,
Npigr and Npjgr, are compatible (Compatiblegos(Npigr, Npjor) = true) if:
|NpigL| = [NpjoLl|
Vnpigr € Npigr, 3" npjor € Npjor, Compatiblegos(npiqr, npjgr) = true
[|

Two operations opi and opj need to provide compatible non-functional QoS properties over
the input and output parameters it combines. Besides the functional composability the following
conditions needs to be verifed
(Compatibleqos (N pout,yi» NPink,,;) = true) where outop; and inkep; are syntactic or semantic
equivalent or almost equivalent.

The new resulting operation will republish the same non-functional QoS properties of the two
composed operations opi and opj but hiding those properties that deal with the composed input
and output.

‘ Np = (Np:pi) Nprj) - {(Npout(opi)a Npink(opj))}

EXAMPLE 15 In our composition example, the Npgn non-functional QoS properties of the com-
position concern the qualityCoef ficient and size of the picture output returned by getSnapShot
and of the image input consumed by reSize. In the example, the non-functional QoS are
composable as getSnapShot returns an image of qualityCoef ficient = 1.0 in conformance of
what reSize need, and size = 5M B < 10M B. The new operation non functional-properties is thus:

NPy, = (access, wifi)

The NPgn related to the Outrakepicture and INChangedimension are not published by the new
service as they deal with internal aspect of the new composed operation.

77

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Section Conclusion

In this section, we presented our general SERVICE model and formalism. We detailed several
services relations that represent the basis for service adaptation and composition. Our services
equivalence and almost equivalence relations, syntactic or semantic, at different levels (functional
and non-functional QoS) is used for our service adaptation. Our service composition relations,
syntactic or semantic, taking into account all the particularities of our SERVICE model (functional
and non-functional QoS properties) is used for our service composition. This section showed how we
manage the QoS of services when defining the services relations. In the next section we explain the
spontaneity concept for service integration. Based on the services relations defined in this section,
we explain the spontaneous service composition, and the spontaneous service adaptations provided
by both the Decision Service and the Registry Service.

3.3 Spontaneous Functional and Non-Functional QoS Service In-
tegration

In this section, we present our spontaneous service integration that takes the functional and non-
functional QoS properties of services into account. We begin by explaining the spontaneity approach
versus the goal-oriented one. We then explain our spontaneous service composition with its runtime
life cycle and techniques, followed by the spontaneous service adaptation with its life cycle and
techniques. As already mentioned, the service transformation is described in the implementation
chapter as it is more related to the chosen service technology.

3.3.1 Spontaneity Versus Goal-Oriented Service Integration

MySIM middleware integrates the services of the environment in a dynamic, proactive, and smart
way. The spontaneity of MySIM integration is in providing users and applications with new services
(new functionalities) but in a completely transparent way and without previous demand or external
control over the integration. Indeed, a spontaneous integration is not initially required by users
and applications, and the proactivity of our framework need to be smart enough to hide the
integration results from users and at the same time provide them with the best capabilities their
environment can offer. This spontaneous service integration is done technically in three ways (cf.
figure[3.20): spontaneous service transformation, spontaneous service composition, and spontaneous
service adaptation.

The spontaneous service transformation enables a given service expressed and provided in a
predefined technology to be transformed into another technology model. This service transfor-
mation allows applications to re-use the services even if provided in different technology model.
This transformation is done in two steps. First, the services are mapped to the generic SERVICE
model (introduced section 3.2.1), then these services are implemented by the Builder Service in
the other chosen technology. In our implementation chapter, we explain transformation rules to
transform services implemented in OSGi service specification to the SERVICE model, and how our
MySIM middleware generates services specified with our SERVICE model into OSGi services.

78

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Service Adaptation

o o o | =

Service Service

o . T Service interface
Composition Transformation

(] Service implementation

Figure 3.20: Spontaneous service integration

The spontaneous service composition enables services to be composed two by two, creating
by that new services that combine all the possible functionalities of the environment. For this
composition to be transparent for users and applications, the new resulting “composed” services
need to publish the same interfaces as the available services in the environment including the services
involved in the composition. Indeed, users and applications access services via their functional
interfaces and their semantic descriptions. Providing new services with the same interfaces but
different implementations and hence different functionalities remain transparent for users. Our
spontaneous service composition seeks for all possible compositions between services leaving the
interfaces unchanged and extending by that the environment with new functionalities.

The spontaneous service adaptation adapts the service execution at runtime, by transparently
insuring to users and applications a viable service for their executions. If a service is unavailable for
any reason, our MySIM searches for functionally equivalent services in the environment, to replace
these services without disturbing users and applications execution. Users and applications have
access to the services interface, and by accessing the same interface all the time, they are not aware
of the implementations changes done behind.

We define our spontaneous service integration fig. as a spontaneous integration of several
services that returns new services with the same well known interfaces for the users and applications,
but different functionalities, implementations, and non-functional QoS. This service integration is
not a response to a user or application request as in a goal-oriented service composition, but
nevertheless it returns functionalities, initially not available in the environment, still accessible via
already existing interfaces. The environments that are enriched with our MySIM, extend and shrink
with services implementations depending on what is available in the environment at a certain time.
For the users and applications, the environment still publishes the same functional interfaces as
before the spontaneous integration (cf. figure [3.21)).

This new way of spontaneously integrating services vis-a-vis to users and applications of the
application layer is triggered, managed, and orchestrated by the Decision Service of MySIM mid-
dleware. The Decision Service needs to respond to the following questions: When to apply the
spontaneous integration? and how to transparently integrate services?

In a goal-oriented integration a specific demand need to be formulated by applications for exe-
cuting an integration. Users specify their demands explicitly and the environment tries to respond

79

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Application Layer Application Layer
S — - — T T T T
[& @ [] | ¢ SN a

Middleware Layer [@Q] [Q\F } Q

Middleware Layer

T interface

Spontaneous integration _J implementation

Figure 3.21: Services environment before and after spontaneous integration

to these demands by integrating the available services, if no atomic services can directly respond
to these demands. On the contrary, the spontaneity of the integration is more related to specific
events occurring in the environment and not controlled and required by users or applications as in
goal-oriented service integration. We distinguish two major events that can affect an environment
in term of functionalities:

e New services appearing in the environment leading to an automatic execution of the spon-
taneous integration (transformation, composition, and adaptation) that extends the environ-
ment with their new functionalities.

e Services leaving the environment that lead to spontaneous service adaptation for users and ap-
plications. Service adaptation replaces the vanishing services with others publishing the same
interfaces but not necessarily the same implementations and non-functional QoS properties.

The notion of new services is different whether it is viewed from the application layer or the
middleware layer. For the middleware, a new service is a service offering new functionalities whether
by providing new functional interfaces or new implementations to pre-existing functional interfaces.
A service offering functional interfaces that are already available in the environment, is considered
new by the framework if the functional properties associated to the service are new in the context.
Whereas for users and applications this service is not new as it publishes well known interfaces even
if providing different implementations. Based on these observations we define new services from
our MySIM point of view as follows:

80

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 48 — MySIM new service s (Naysrv(s) = true)

Considering S the set of services available in the environment. A service s € S is
considered new to MySIM middleware (Narysrar(s) = true) if:

(Vsi € S, =syntactic (si,s) = false) V (if (Zsyntactic (S,51) = true) = =p,
(si,s) = false)

V

(Vsi € S, =semantic (si,8) = false) V (if (Zsemantic (si,8) = true = =p,
(si,s) = false)

ExXAMPLE 16 Considering the two services storage, having each one an operation that stores images

on hardwares (cf. figure :

Storage
In ={<s, java.awt.image.Bufferedlmage, «Image »>, <s, java.lang.String, «Location »>}
Qut={void>}
cpt={<store, «store picture »>}
Npgn={<size, 100MB, '<' >}
Npqgl={(access, «wireless»)}
Impl = {< Pr >}

Pr = {< storageLocal, atomic>}

Storage
In ={<s, java.awt.image.Bufferedlmage, «Image »>, <s, java.lang.String, «Location »>}
Out={void>}
cpt={<store, «store picture »>}
Npgn={<size, 100MB, '<' >}
Npgl={(access, «wireless»)}
Impl = {< Pr >}

Pr = {< storageFtp, atomic>}

Figure 3.22: Two storage services

81

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

The two services have the same operation signature, and semantic descriptions, but two different
implementations. The first storage service proposes to store locally images, the second one proposes
a remote storage via ftp procedures. These two services can be distinguished by the value of their
properties. The property describes the implementation of a specific interface and different imple-
mentations correspond to different properties. For MySIM middleware, these two storage services
are different but for users and applications these two services are the same.

The how to transparently integrate services for users and applications is thoroughly explained
for the service composition in section 3.3.2 and for the service adaptation in section 3.3.3.

Upon their appearance, new services (whether provided by developers or resulting from services
integration), register their interfaces and their respective properties in a registry maintained by the
Registry Service. This MySIM service is aware of all the available services, of the associations
between their interfaces and properties, and of the runtime topology of the environment. For
every appearance, disappearance of services, it reports these events information to the Decision
Service which is responsible of triggering the adequate integration technique. In the case of a
service appearance, if the service is new for MySIM middleware, spontaneous transformations, service
compositions, and service adaptation are triggered. If the service already exists no composition
is proceeded. If the service does not fit better applications than the already existing services, no
adaptation is proceeded. In case of service disappearance, the Decision Service spontaneously
tries to adapt the execution of applications to this disappearance by replacing the service with
equivalent or almost equivalent ones. Service resulting from a spontaneous composition between
this services and others need to stopped. In the rest of this chapter, we detail our spontaneous
service composition, followed by the spontaneous service adaptation. The service transformation
is explained in the next chapter, chapter 4.

3.3.2 Spontaneous Service Composition

The services taking part in realizing the spontaneous composition are the Generator Service, the
QoS Service and the Builder Service (cf. figure . The Generator Service generates all
possible spontaneous services composition between the services available in the environment. We
mean by spontaneous service composition, service composition that returns equivalent or almost
equivalent services comparing to already existing services in the environment. These abstract pos-
sibilities are passed to the QoS Service for inspection and non-functional QoS services decoration.
The QoS Service verifies that the composition is also valid for non-functional QoS properties of
services, and assign the new abstract resulting services the adequate non-functional QoS proper-
ties. The Decision Service verifies via the property of services that no duplication is made. That
means, no services are composed twice by the MySIM middleware. The final valid combinations that
return transparent functional and non-functional compositions for users are passed to the Builder
Service for implementations.

In section 3.3.2.1 we detail the runtime life-cycle of a spontaneous service composition cycle,
followed in section 3.3.2.2 of a detailed explanation of the employed techniques to realize the effective
spontaneous service composition.

82

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

LI
ok
Translator Generator Evaluator Builder
—-
Translator Generator QoS i
) ! Build -m
Service Service S;Jrlviceé
Decision Registry
Service Service

Service composition

Figure 3.23: Services achieving the technical spontaneous service composition

3.3.2.1 Spontaneous Service Composition Life Cycle

To achieve the spontaneous service composition, every service of the MySIM services will have to

accomplish a specific task.
In figure the different steps of a cycle of a spontaneous service composition are described.

We distinguish several important steps:

1.

Services technologies transformation: The various service technologies available in the en-
vironment are transformed into our generic SERVICE model. The mapping transformation
rules are explained in the implementation chapter, chapter 4.

. Syntactic and semantic abstract service composition: The Generator Service matches all

the services syntactically and/or semantically and returns all the possible transparent com-
binations that returns equivalent or almost equivalent services to already existing services in

the environment. This is thoroughly explained in section 3.3.2.2

These spontaneous service composition possibilities are passed to the QoS Service to ver-
ify the non-functional QoS between the composed services and to assign the adequate non-
functional QoS to the chosen composition results. This is thoroughly explained in section
3.3.2.2

The Decision service controls the service composition proposition. It uses the semantic to
control the syntactic composition but also the property to control that no service duplication
is made.

The final abstract service compositions are passed to the Builder Service for service im-
plementation and generation. This aspect is detailed in the implementation chapter.

83

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

6. The newly available services are deployed in the environment and register their interfaces
under their new properties through the Registry Service.

Translator Service Generator Service QoS Service
Various 1 . 2 i i 3
. Services Syntactic Service o _—
Technologies —— 1o hnologies — Composition _.VGFImegf& At§3|9n|m9)
© o transf ti Semantic Service non-tunctiona
a_ag ransformation € QoS
© g T F Composition
- 7
Services model
Builder Service
Various Integrated Services 4 Technical
Technologies Integration / —
(creation of new services)
9
\ 6 °Semantic & Property
Registering & control of the
Monitoring compositions —
Registry Service

Decision Service

Figure 3.24: Spontaneous Composition runtime phases

The spontaneous service composition is launched upon each appearance of a new service in
the environment. The new service can be itself the result of a spontaneous composition and its
deployment in the environment triggers automatically the spontaneous service composition. As the
matching is done on functional interfaces, the Generator Service will always return the same ab-
stract possible combinations and if no stop condition is defined, the same services will be composed
over and over again, extending the environment with the same implementations over and over.

Our Decision Service for each cycle of a spontaneous service composition verifies just before
the Builder Service implements the chosen composition that no composition is done twice and
that by analyzing the properties of the services. Once a new service is in the environment, whether
it is provided by applications or resulting from a spontaneous composition, the Decision Service
verifies whether it is a new service. A new service is defined as proposing new interfaces or new
implementations for existing services interfaces. If the newly arriving service does not verify one
of these conditions, it is considered as already existing in the environment and no spontaneous
composition is launched. If the service is new, the Generator Service and QoS Service produce

84

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

all the possible transparent service composition. Before passing these combinations to the Builder
Service the Decision Service analyzes the property of these possible service compositions, if the
properties already exist in the environment, no composition is implemented. This stop conditions
ensures that no services composition duplication is made by our MySIM middleware. On the other
hand, it has severe limitations on the diverse ways that can exist to compose services together.
Indeed, two operations may be composable over not only one parameter input but several, and the
actual property description do not take this into consideration. One issue is to supply the property
with an additional parameter that specifies which elements of the operations (and by generalization
services) is actually being composed. By that the options of composing two services are much more
important and especially allowed by the Decision Service.

EXAMPLE 17 We consider the following properties in the environmment, describing the functional
interfaces published to the user and applications:

Pry = {< takePicture,atomic >}
Pry = {< resizePicture, atomic >}
Prs = {< storagePicture, atomic >}

We suppose that the functional interfaces described by these properties include composable
operations and that the resulting composition produce equivalent or almost equivalent services to
the set of already available services. The Generator Service and QoS Service generates all the
possible combinations and the Decision Service verifies the generated properties:

Pry = {< takePicture, integrated > (< resizePicture, atomic >)}
Prs = {< storagePicture, integrated > (< resizePicture, atomic >)}
Pr¢ = {< takePicure,integrated > (< storagePicure, atomic >)}

All these properties are different of the already existing properties in the environment. The
deployment of these interfaces under these properties, trigger the spontaneous composition and
another cycle of matching is produced. The Decision service will analyze the properties and
discover that some of the proposed service compositions have already been composed. We take the
TakePicture service and have a look on the possible service compositions:

Pr; = {< takePicture, integrated > (< resizePicture,atomic >)(< resizePicture, atomic >)}
Prg = {< takePicure,integrated > (< storagePicure, atomic >)(< resizePicture, atomic >)}

The property Pry is redundant whereas the property Prs corresponds to a real new composition.
The Decision Service asks the Builder Service to implement the new service corresponding
to property Prg and not the one corresponding to property Pri. Another cycle of spontaneous
composition is triggered due to the deployment of the new service publishing Takepicture interface
under the new property Prg. This time all the possible services compositions have already existing
properties and the MySIM does not compose any new service.

The choice between realizing a syntactic or semantic matching depends strongly on the na-
ture of the available devices. The strategy usually applied is to perform a syntactic spontaneous

85

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

composition at first, which allows a quick creation of new services. This syntactic matching is con-
trolled by a semantic evaluation of the concepts compatibilities of the composed services. Indeed,
a syntactic matching can be done between two services that are syntactically compatible but do
offer completely different functionalities. The semantic service concept matching highlights the non
useful combination that a syntactic matching may propose. By that, a decision can be taken to
give up certain combinations. If these combinations have already been implemented, the Decision
Service asks the Registry Service to stop these services and to unregister the corresponding
properties for the functional interfaces. If these combinations where not yet implemented, the
Decision Service does not pass the combinations to the Builder Service. This is useful in
resource constraint environment as syntactic matching is less consuming than a semantic one. In
environments where no resource constraint applies a semantic spontaneous service composition is
preferred to the syntactic one. If it generates less composed services, it ensures that the generated
services are semantically useful for users and applications.

EXAMPLE 18 The spontaneous syntactic service composition relies on a syntactic matching of
mputs and outputs that do not take into consideration the operations semantic descriptions. The
syntactic composition can produce services that are mot useful to applications as they have no
reasons to be composed together. Consider the following operations signatures:

Ing1 = {< s, java.lang.String,” Message” >}
Outopr = {< java.lang.String, " Advertisement” >}
Cptopt = {< publish, "advertise message” >}

Ingpy = {< s, java.lang.String,” Path” >}
Outopz = {< java.lang.Boolean, "state” >}
Cptope = {< print, "print document” >}

If these two operations are composable as the output of the publish operation is of the same
type as the input of the print operation, the semantic meaning of each operation is different as
specified in the concept description. The first operation advertises a message whereas the second
one prints a document from its path specifications. The semantic control will alert upon this
inconsistency and the syntactic composition will be stopped.

3.3.2.2 Spontaneous Service Composition Techniques

To realize the spontaneous service composition, we rely on the service relations defined section
3.2.2. The spontaneous service composition is a composition relation between two services (which
at least one of them is new in the environment) that needs to be transparent for the application
layer. This transparency is reflected in the services equivalence and almost equivalence relations.
Based on these conditions We define this spontaneous composition as follows:

86

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 49 — Environment spontaneous services composition

We define two services si and sj from a set of service S to be environment spontaneous
composable for S, Og,(si,sj) = true if si or sj are new in the environment
((Nmysiv(si) = true) V. (Nuysivm(sj) = true)) and the resulting composition
service is equivalent or almost equivalent to any sk € S, Vk € {1..|5]}

If ((Osyntactic(Sia S]) = true) \ (Osemantic(Siy 3]) = true))
A (Compatiblegos(Npout,; , Nprn,;) = true), we note sl the resulting service
of the composition of si and sj.

The spontaneous service composition is:

Osp(Si, s7) = (Esyntactic (sl, sk)) v (Dsyntactic(SZ, sk)) v (Ssemantic
(Sl, Sk?)) \ (Dsemantic(’Sla Sk))

When implementing the service sl, the Builder Service needs not only to define the new
operations signatures and non-functional QoS properties as explained section 3.2.3, it also needs
to specify the property related to this composition and to implement the implementations corre-
sponding to the new operations. The implementations part is thoroughly explained in chapter 4.
The new service sl resulting from the composition of the two services si and sj, will publish its
interfaces, under a property that specifies that the service sl is a composition of st and sj.

DEFINITION 50 — Services composition property definition
We suppose two services si and sj from a set of service S to be environment
spontaneous composable for S, Ogy(si,sj) = true, we note sl the resulting

service of the composition of si and sj. sl publishes the same interfaces as any
sk € S, Vk e {1.|S}
The spontaneous service composition sl new property is:

Prq = Pr', e(Prg)e(Prg), Vk € {1.]5]}

Prl, is the property of sk where the wvalue is integrated rather than atomic.
The new property Prg describes a new service that is integrated, equivalent to service

sk and composed of the two services si and sj.

Based on this definition, we introduce a localized spontaneous service composition, that applies
the transparent composition on a localized level. This tiay be very useful in pervasive environments,
as devices can connect and disconnect at any time, and no general view may be available, for a
certain time, on all the services of the environment.

87

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEeFINITION 51 — Localized spontaneous services composition

We define two services si and sj from a set of service S to be localized sponta-
neous composable, Og,(si,sj) = true if si or sj are new in the environment
((Namrysim(si) = true) V. (Numysrivm(sj) = true)) and the resulting composition
service is equivalent or almost equivalent to sk, sk = {siV sj}

If ((Osyntactic(Sia 5]) = true) \ (Osemantic(‘%’v S]) = t’rue))
A (Compatibleqos(Npout,;» Npmn,;) = true), we mnote sl the resulting service
of the composition of si and sj.

The spontaneous service composition is:

Osp(Sia SJ) = (Esyntactic (Sl7 Sk)) \ (Dsyntactic<3l7 Sk)) \ (Esemantic
(sl,sk)) V (Psemantic(sl, sk))

[
And the property definition of the composition is defined:
DEFINITION 52 — Services composition property definition
We suppose two services si and sj from a set of service S to be localized spontaneous
composable for S, Ogy(si,sj) = true, we note sl the resulting service of the
composition of si and sj. sl publishes the same interfaces as si or sj.
The spontaneous service composition sl new property is:
Prg = Pr/si ° (P?“Sj) V PT'/S]- o (Prg;)
Pr;(i/j) is the property of s(i/j) where the value is integrated rather than atomic.
The new property Prg describes a new service that is integrated and composed of the
two services si and sj.
[

EXAMPLE 19 We consider the following two properties in the environment, describing the func-
tional interfaces published to the user and applications:

Pry = {< takePicture, atomic >}
Pro = {< resizePicture, atomic >}

A localized spontaneous service composition of the two services will publish the following
property:

Pr3 = {< takePicture, integrated > (< resizePicture, atomic >)}

88

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

EXAMPLE 20 We consider the following two properties in the environment, describing the func-
tional interfaces published to the user and applications:

Pry = {< storePicture, atomic >}
Pry = {< resizePicture, atomic >}
Pry = {< storeZip, atomic >}

An environment spontaneous service composition of the two services publishing Pri and Pro
will publish an interface equivalent to the ones registered under Pry property. The new service
composition property 1S:

Prs = {< storeZip, integrated > (< storePicture,atomic >)(< resizePicture, atomic >)}

ExaMPLE 21 Coming back to our example section 3.2.3 we define the three services having each
the three operations: takepicture, changedimension and storage (cf. figure . We explain our
spontaneous service composition using this example.

Take photo Change dimension
In = {<void>} In = {<s, java.awt.Image, «Image »>}
Out={<java.awt.Image, « Picture»>} Out={<java.awt.Image, « Image »>}
Cpt={<getSnapShot, « take picture »>} Cpt={<reSize, « resize picture »>}

Npan={(qualityCoefficient, 1.0, >)(size, 0.5MB,<)} Npgn={(qualityCoefficient, 1.0, >) (size, 1MB, <)}

Npgl={(access, « wifi »)} Npgl={(access, « wireless »)}

Storage
In = {<i, java.awt.image.Bufferedimage, «Image »>, <s, java.lang.String, «location »>}
Out={<void>}
Cpt={<store, « store image »>}
Npqn={(size,100MB, <)}

Npgl={(access, «wireless»)}

Figure 3.25: Three services operations specifications

The syntactic spontaneous composition gives the new operation getSnapShot as shown fig-
ure [3.20

Osyntactic(opmkepicture7Opchcmgedimension) = true

89

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

CompatiblerS(NPtakepictur67 Npchangedimansion) -
Compatibleqos(qualityCoe f ficientrakepicture, qualityCoef ficientrakepicture) A
(

COmpatiblerS SizeTakepictureaSizeTakepicture) =
(1L.0C1.0) A (05 C 1) = true

The new operation getSnapShot resulting from the composition of the two operations getSnapShot
and reSize has the same signature as the getSnapShot involved in the composition.

=syntactic (Opnewaoptakepicture) = true

On the other hand, the two operations - old and new getSnapShot - do not offer exactly the same
functionality. The new operation is enriched with the resizing functionality. Once this abstract com-
position generated by the Generator Service, it is passed to the oS Service for non-functional
QoS properties verification. The two services have compatible non-functional properties as their
respective N Pon are compatible. The QoS Service can hence give the new operation getSnapShot
the appropriate non-functional QoS properties based on the non-functional QoS of the two composed
services. The new resulting property attached to the new operation will have an "integrated”
value specifying that this operation implementation is new in the environment and combines two
other "atomic” functionalities "takePicture” and "resizePicture”. The Decision Service after
analyzing the property and verifying that no equivalent is found in the environment can ask the
Builder Service to implement the new integrated service. The Builder Service can hence
implement the new service offering the same interface as Takephoto but with different functionality.

In = {< void >}

Out = {< java.awt.Image, “Picture” >}

Cpt = {< getSnapShot, “take picture” >}

Npgr, = {< access, “wireless” >}

Npgn = {< qualityCoef ficient, 1.0,> >, < size, 0.5M B, <>}
operator = {< >, <, =>}

Impl = {< Pr >}

Pr = {< takePicure,integrated > (< resizePicture, atomic >)}

The new Takephoto service is functionally equivalent to the previous Takephoto. But it presents
differences in the non-functional QoS it needs, as it has to satisfy those of ChangeDimension
service. The property reflects the service integration as it indicates that this Takepicture is an
integrated service with the atomic Changedimension service.

The semantic spontaneous composition gives the new operation storage as shown figure|3.2
(Osemantic(opstm"ageyOpchangedimension) = true)
The new operation store resulting from the composition of store and reSize has the same

semantic description as the store operation, but providing an extended functionality of storing
images that resizes them before.

90

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

java.awt.Image java.awt.Image
getSnapShot —— » eSjzeg —m8»

getSnapShot

Figure 3.26: New getSnapShot operation

(Esemantic (Opnew; Opstomge) = true)

Once the Generator Service passes this abstract combination to the (oS Service, this
last one wverifies the compatibilities of the non-functional QoS and passes the adequate composi-
tion with the adequate values of the non-functional QoS to the Builder Service. DBefore, the
Decision Service controls the new property to wverify that no duplication will be made if the
service composition is implemented. The new storage service will have NPgy that respect both
Changedimension and Storage services. For that reason the qualitative non-functional QoS size
will be of 1M B respecting by that the qualitative non-functional QoS of Changedimension. The
spontaneous composition will generate two different services of the new storage corresponding to
the services initially available in the environment.

In = {< i, java.awt.Image, “Image” >, < s, java.lang.String, “location” >}
Out = {< void >}

Cpt = {< store, “storeimage” >}

Npgr, = {< access, “wireless” >}

Npon = {< size,IMB, <>}

Impl = {< Pr >}

Pr = {< storageftp,integrated > (< resizePicture, atomic >)}

In = {< i, java.awt.Image, “Image” >, < s, java.lang.String, “location” >}
Out = {< void >}

Cpt = {< store, “storeimage” >}

Npgr, = {< access, “wireless” >}

Npon = {< size,1IMB, <>}

Impl = {< Pr >}

Pr = {< storageLocal, integrated > (< resizePicture, atomic >)}

The two services are different as their functional interfaces are registered under different

91

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

properties.

«lmage » «Image »
— 1eSize ——*

store
« location »

L

store

Figure 3.27: New storage operation

To really tmplement the new storage operations a translator is needed to translate between types
as shown figure[3.28. This aspect is more explained in the implementation chapter.

java.awt.Image java.awt.Image java.awt.image.Bufferedimage

) Image to
E——. =
reSize Buffered store

java.lang.String

store

Figure 3.28: Types translation

The new resulting services, the Takephoto and Storage are implemented and deployed by
the Butlder Service into the environment. These deployments are seen by MySIM middleware
as events triggering the spontaneous composition. As their interfaces are still compatible with
ChangeDimension a possible integration can be initiated. The Generator Service returns the
same possibilities as above that combine Takephoto and Storage. After passing the QoS Service,
this combination arrives to the Decision Service. The Decision Service analyzes the interfaces
properties and is aware that a previous integration has already been done. Indeed, the property in-
dicates that the new proposed service combines functionalities already combined. No integration is
hence launched.

A semantic composition relation exists between the two operations getSnapShot and store but
the resulting operation is not semantically nor syntactically equivalent to any of the three operations
available in the environment which means that if the composition is proceeded it will produce a
new operation with a new signature and hence a new functional interface in the environment. This
kind of composition do not provide transparent result to the application layer and can occur only

on an a user on-demand composition.

92

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Our MySIM middleware has all the techniques to execute an on-demand service composition
for users and applications. The Translator Service translates a given user request into the
SERVICE model. The Generator Service searches for all the possible composition combinations
that return equivalent or almost equivalent services to the requested service. The QoS Service
verifies the non-functional properties for the composition and assign the adequate properties for
this composition. Finally the Builder Service implements the newly composed service in the

same technology model as required by the user or applications.

3.3.3 Spontaneous Service Adaptation

In a pervasive environment, devices can come and go, connect and disconnect at any time and
without previous prevention. Services, deployed on these devices, can appear and disappear even
if used by the applications and users of the environment. MySIM middeware proposes service adap-
tation techniques to respond to these changes and to allow applications to continue their execution
regardless of services appearance and disappearance. In this section, we begin by explaining a
service life-cycle in a pervasive environment. Then, we explain how our MySIM middleware reacts
to the events related to this life-cycle. Finally we emphasizes the employed techniques that allow

a spontaneous transparent service adaptation for the application layer.

3.3.3.1 Spontaneous Service Adaptation Life Cycle

When a service is deployed in the pervasive environment, it registers its functional interface under
the property it wishes to publish. Indeed, a service may wish to publish a specific aspect of the
functionalities it provides and implements, and this is typically expressed in the functional property
that naturally links between the interface operations and their implementations. These registrations
are done through the Registry Service that plays the role of a dynamic service registry and service
listener. A service may publish its interface without attaching a functional property. If no property
is attached to a functional interface, that means that the service implementing the interface does
not wish to focus on a particular aspect of this implementation. Once started, the services can
be executed by the available application clients. The Registry Service may stop, suspend and
restart services when needed and upon the Decision Service demand.

When a client needs a specific service, it sends its request to the Registry Service specifying
the functional interfaces it seeks. It can also specify the desired functional properties attached to
the functional interface. If no property is specified, the Registry Service can choose the services
it wants. Services appearing in the environment register their functional interfaces under their
properties related to their implementations through the Registry Service.

When a service appears in the environment, the Registry Service notifies the Decision
Service of this appearance. The Decision Service will ask the Generator Service to find out
if this service is functionally equivalent or almost equivalent to other services already available in
the environment and being used by applications. If this is the case, the Decision Service requires
from the QoS Service to compute the Q0Sgegree of this new service in order to verify whether its
non-functional QoS properties are more adapted and fit better some applications requirement than

93

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

the already used services. This spontaneous and proactive service adaptation occurs even in not
required by the applications. If the new service provides better non-functional QoS for applica-
tions, it will be proposed spontaneously and transparently to these applications. Applications will
continue to have the same required functionalities as the services are interface equivalent or almost
equivalent but with better non-functional QoS properties.

When a service disappears, the Registry Service that also plays the role of a service listener is
aware of this disappearance, it unregisters the services and reports this information to the Decision
Service. Some actions need to be undertaken to cope with these changes. The call to these services
will be automatically redirected to other available services offering same interfaces but with different
implementations and hence different properties. This redirection is kept transparent to the users
and applications in the application layer (cf. figure [3.29).

Application Layer Application Layer

oo Ov0 S DHO

Middleware Layer Middleware Layer

Application Layer

Sroln '

Middleware Layer

Figure 3.29: Services spontaneous adaptation for the application layer

The Decision Service is the one responsible of these service adaptations. it reposes over the
Registry Service to be notified of possible appearance and disappearance of services and upon
the Generator Service and the QoS Service to find the best services that are interface equivalent
to the service that appeared or disappeared and that offer better or similar non-functional QoS
properties.

The need for service adaptation occurs when a new service arrives or one a client requires a

94

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

service that is no longer available. MySIM provides transparent adaptation mechanisms that take
in charge providing the functionalities requested by the service by switching between the different
available equivalent services whether atomic or integrated. This switch is done in a transparent
way and the clients are unaware of it.

The MySIM services taking part in the spontaneous service adaptation are the Decision
Service, the Generator Service, the QoS Service, and the Registry Service.

Translator Generator

Translator
Service

Evaluator Builder
-

QoS Builder
Service Service

Decision
Service

Generator
Service

Registry
Service

Service adaptation

Figure 3.30: Services taking part in the spontaneous service adaptation

3.3.3.2 Spontaneous Service Adaptation Techniques

The service adaptation techniques are applied by the Decision Service once a service appears or
disappears from the environment and its functional property is registered or unregistered by the

Registry Service.
Service appearance

Considering a set S of finite services in the environment, we denote si the service that ap-
pears. As a first step, the Decision Service searches for functionally equivalent or almost
equivalent services interfaces in the environment. Indeed, these services are services that provide
the same functionality - the same functional interfaces - as the service si, and can be replaced in
the application clients execution by the service si .

95

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

DEFINITION 53 — Spontaneous service adaptation upon a service appearance
We consider the new service si. We suppose that the service si is equivalent or almost
equivalent to other services in the environment:

3 Sj € S7 (Esyntactic (Si,Sj) = t'rue) \ (Esemantic (si,sj) =
true) V. (syntactic(st, sJ) = true)V (Psemantic(si, sj) = true)
The spontaneous service si adaptation succeeds (A(si) = true) if si can re-

place sj for the application execution and that by providing better non-functional
QoS properties than sj for the applications. By checking the profile of applications,
the Decision Service knows the values and the priorities (wi) that the applications
would like to assign to the non-functional QoS properties. The QoS Service can
simulate a service sk, with these values, and calculates the Qo0Sgegree using the wi
specified by the applications. If no wi are assigned, the QoS Service applies the
following values:), . ywi = 1. The service adaptation succeeds (A(si) = true) if:

QOSdegree(Sia Sk) < Qosdegree(sja Sk)

which means that the new service si is closer to sk than sj is to sk in terms of
non-functional QoS properties, sk reflecting the applications needs and preferences for

the non-functional QoS properties of the service they executes.

EXAMPLE 22 Considering the three operations defined in figure [3.51]

The Printing service is a new service appearing in the environment and is semantic almost
equivalent to the Impression service. The Decision Service considers applications using the
Impression service, and verifies which non-functional QoS properties are the required by the appli-
cations. For example, if the price is important, the Wyrice would be much more important than the
Waccess ANA Wnppage, and the new Printing service fits better for the application. The QoS Service
simulates a new service by assigning it the adequate values of the non-functional QoS properties re-
quired by applications. As an example we can give the following application required non-functional
QoS properties depicted under service sk:

96

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Printing Impression
In = {<f, java.io.File, «document »>} In = {<s, char*, «path »>}
Out={<java.lang.Boolean, « state »>} Out={<bool, « state »>}
Cpt={<print, « printer »>} Cpt={<println, « printer »>}
Npan={(nbPage,60,>), (price,10,<)} Npqn={(nbPage,100,>), (price,20,<)}
Npql={(access, « wifi »)} Npql={(access, « wireless »)}
Printer

In ={<f, java.io.File, «URI»>}
Out={<java.lang.Boolean, « state »>}
Cpt={<print, « printer »>}
Npgn={(nbPage,10,>), (price,2,<)}

Npgl={(access, « bluetooth »)}

Figure 3.31: Three services operations specifications

Npor = {< access, “wireless” >}
Npon = {< nbPage, 50, ' >" > < price, 12, ' <’ >}

And wprice = 0.6, Waccess = 0.2, Wpppage = 0.2
First we calculate the values that we need for our degree calculations:

The mean for nbpage property: u(nbpage) = 55

The standard deviation for nbpage property: o(nbpage) = 32
The normalized z-score values are: n(nbpageprinting) = 0.46
U(Nbpageimpression) = 0.149

n(nbpageprinter) = 0.85

n(nbpages,) = 0.54

The mean for price property: p(price) = 11

The standard deviation for price property: o(price) = 6,4
The normalized z-score values are: n(priceprinting) = 0.46
n(priceimpression) = 0.85

n(priceprinter) = 0.15

n(pricesy) = 0.539

97

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

The semantic distance for the non-functional properties are: Dgsemantic(ACCESSprinting, GCCESSsE) =

0.8, Meoncept((wifi'/ wireless’) = Subsume
Dsemantic(accessimpression, accessgy) = 0, Meoncept('wireless’ wireless’) = PluglIn
Dsemantic(accessprinter, aCCeSSprinter) = 1, Meoncept('bluetooth’ wireless') = Fail

Using these values we calculate:

Q0Sgegree(Printing, sk) =0.6%0.08 + 0.2%x0.8 + 0.2%0.078 = 0.22
Q0Sgegreec(Impression, sk) =0.6%0.391 + 0.2x0 + 0.2%0.311 = 0.29

We have Q0Sgegree(Printing, sk) < Q0Sgegree(Impression, sk), which means that the new
printing service fits better the application requirement.

Service disappearance

Another major issue requiring adaptation is the disappearance of services form the environ-
ment. If a service disappear, the Registry Service is notified and it notifies the Decision
Service. This one asks the Generator Service to come back with all the services that are
equivalent or almost equivalent to this service. If many services are found, the Decision Service
creates sets of services. A set for the services equivalent, almost equivalence, syntactically or
semantically. The set are ordered from the syntactically equivalent to the semantically almost
equivalent. The equivalence is considered better than the almost equivalence, as services can be
interchanged in an equivalence relation (symmetric relation).

We consider a service si. We suppose that the service si is equivalent or almost equivalent
(syntactically and/or semantically) to other services in the environment:

. s € S7 (Esyntactic (Sj’Si) = true) \% (Esemantic <3j7 3i) = tT’u€)\/ (Dsyntactic(sjysi) =
true)\/ (Dsemantic(sj, Si) = true)

DEFINITION 54 — Functionally ordered set of equivalence

We define the following;:
syntactic . _ ..
Ey : set Of 57, (:Syntactic (5]752) = true)
syntactic . N
Sx : set of sj, (Psyntactic(s], i) = true)
Gsemantic . get of 87, (Zsemantic (87,51) = true)
Ssemantic . set of sj, (Psemantic(8, 1) = true)
These sets are ordered as follows S2¥"ctic . gsyntactic - gsemantic - gsemantic

The syntactic equivalence is preferred to the semantic equivalence as it means that services
are provided in the same technology model and there is no need for any transformation to replace
a service by another one. On the other hand the semantic equivalence offers more possibilities

98

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

as it searches in all the environment for services offering the same functionalities as the service
that disappeared. Thats why a semantic equivalence is sometimes preferred to a syntactic almost
equivalence. This is reflected in the < operator used instead of <.

In every set, services are ordered following the Q0Sgcgree function that returns for every equiv-
alent services with the service that disappeared their degree of equivalence concerning the non-
functional QoS properties related to the service that the Decision Service would like to replace.

We consider the disappearing service si. We suppose the sets of services that are syntactically,
semantically, equivalent or almost equivalent to si:

Geyntactic . oy of sj, (Esyntactic (sJ,81) = true)
Syntamc: set of sj, (Psyntactic(s],s1) = true)
Ssemantic . set of 55, (Zsemantic (87,51) = true)
Ssemantic . get of s, (Bsemantic(8],81) = true)

For every set, we order the services of the set following their non-functional QoS properties
and how they are similar to the ones of the disappearing service. By checking the values on
the non-functional QoS properties for each service of every set, the QoS Service calculates the
Q0Sdegree (8], s1), ¥V sj € S of each service of a set with the service si. If no ponderation is given
by the applications upon the priority of the properties the QoS Service employs the same value
for wi : Y7, o ywi = 1. The services within each set are ordered from the best one (service sj
that minimizes Q0Sgegree (], 51)) to the worst one (service sk that maximize QoSgegree (57, 51)):

DEFINITION 55 — QoS ordered set of equivalence

When a service si disappears, the Decision Service asks the Generator Service
and QoS Service to compute all possible T and chooses the best replacement for the
service st by beginning from the most suitable set with the most suitable non-functional

QoS properties.

EXAMPLE 23 Returning to our example section 3.2.2 of the Printing, Impression, and Printer

services (cf. figure .

If we search to replace the Printing service because of a sudden disappearance and need to
choose between the Impression or the Printer services, the calculated Q0Sjegree between these
services are different depending on the values assigned to wi.

Q0Spegree(Printing, Impression) = wl * (In(nbpageprinting) — 1n(nbpageimpression)|) +
w2 x (‘n(pTiceprinting) - n(priceimpression)‘) + w3 * (Dsemantic(accesspm'nting7accessimpression))

99

Téymamic . set of ordered sj,(Q0Sgegree(Sj,51) < Q0Sdegree(Sj+1,51),7 € [1..\S;ynmmic| —

TEVMactic . set of ordered sj, (Q0Sgegree(sj, i) < Q0Sdegree(sj+1,51),7 € [1..|Sgymtacte| _

Tsemantic . set of ordered sj, (Q0Sgegree(8j,51) < Q0Sgegree(Sj+1,51),7 € [1..|Sgemantic| _
([

T;ema”tic . set of ordered sj,(Q0Sgegree(S;5,51) < Q0Sgegree(Sj+1,51),7 € 1..|S§em‘mti"| —

1
1

)
)
1])
1)

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

Printing Impression
In = {<f, java.io.File, «document »>} In = {<s, char*, «path »>}
Out={<java.lang.Boolean, « state »>} Out={<bool, « state »>}
Cpt={<print, « printer »>} Cpt={<println, « printer »>}
Npan={(nbPage,60,>), (price,10,<)} Npqn={(nbPage,100,>), (price,20,<)}
Npql={(access, « wifi »)} Npql={(access, « wireless »)}
Printer

In ={<f, java.io.File, «URI»>}
Out={<java.lang.Boolean, « state »>}
Cpt={<print, « printer »>}
Npgn={(nbPage,10,>), (price,2,<)}

Npgl={(access, « bluetooth »)}

Figure 3.32: Three services operations specifications

Q0SDpegree(Printing, Impression) = wl % 0.27 + w2 0.35 + w3 % 0.2

Q0Spegrec(Printing, Printer) = wl * (|n(nbpageprinting) — n(nbpageprinter)|) + w2 x

(|77(pricep7"inting) - n(priceprinter) ’) + w3 * (Dsemantic(accessprinting’ accesspm’nter))

Q0Spegree(Printing, Printer) = wl x 0.33 + w2 x0.33 + w3 1

If the service Printing is no longer available, the Decision Service finds the service Impression
as syntactic equivalent to Printing and Printer as semantic equivalent to Printing, as it is
provided in another technology model. For their non-functional properties, it is clear that if the
Decision Service assigns the same value to the three wi, the Impression service would have a
closer degree to Printing. Nevertheless, if the application using Printing gives more importance
to the price of the printing service, the Deciston Service will assign to w2 a greater importance,
and we can notice the Printer service has a closer degree to Printing than the I'mpression
service. Nevertheless the Impression service is preferred as it is a syntactic equivalence and belong
to the preferred set of equivalence services.

It can occurs that no equivalent or almost equivalent services are found, in that case the search
may be refined over a set of operations. If the users and applications of the services that disappeared

100

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

used a particular operation or set of operations, the search may be specified over these operations

using the equivalence and almost equivalence service relations defined upon particular operations

=2 07)
—syntactic/semantic’ ~ syntactic/semantic’"

DEFINITION 56 — Spontaneous service si adaptation over Op
The spontaneous service si adaptation over a predefined set of operations Op succeeds if:

. _O .o _0 .
3 sj € S, (=sy11)'btactic (Sj, 37’) = true) vV (=se€nantic (s7: 52) =
@) . 1) .
true) v (Dsypntactic(s-]’ S’L) = true) v (Dsez;nantic('s]’ 87‘) = true)

EXAMPLE 24 Considering the three services interfaces and their semantic descriptions in fig-
ure [3.33:

Figure 3.33: Three services operations specifications

{Oplifcly Opzifcl}
We have (Dsemantic

interface ifcl can replace the service ifc3 over the operations oplifc1 and op2;ge;.

(ifcl,ife3) = true), which means that the services proposing the

101

CHAPTER 3. SPONTANEOUS SERVICE INTEGRATION MIDDLEWARE

As for the service as a whole, the Decision Service requires from the Generator Service
and QoS Service to create the sets of equivalent and almost equivalent services over the predefined
set of operations and that syntactically and semantically. It also orders the services within these
sets depending on the non-functional QoS properties of the concerned operations and not the non-
functional QoS properties of all the service.

If no services are found, the Decision Service may consider the services that are Subsume
matching with the service that disappeared. If this replacement can fail to provide the required
functionality as a Subsume matching between services does not guarantee that the new service can
provide all what the other service provided, it can allows the environment to provide something to
the applications even if not exactly what is required, while awaiting the appearance of the desired
services. The Decision Service proposes these services to the applications, specifying that the
services they seek are no longer available.

In case of complete failure of finding an appropriate service, the Registry Service redirects all
the calls to the functional interface of the disappearing service to a proxy. Once a service registers
a functional interface responding to the applications needs, the calls of the proxy can be redirected
to this new service.

Section Conclusion

In this section, we presented our spontaneous service integration proposed by MySIM middleware.
The section focused on the spontaneous service composition and the spontaneous service adap-
tation. Based on the equivalence and composition relations defined in the previous section, we
explained the spontaneous service composition and adaptation life-cycle and techniques. The spon-
taneous service composition extends the already available functional services interfaces with new
implementations, extending by that the functionalities an environment can offer to its users and
applications. The spontaneous service adaptation hides the changes that affects the environment
in terms of functionalities to the users and applications by providing pro-active mechanisms that
adapt the call to services interfaces to the available implementations of these latter. In the next
chapter, we explain our spontaneous service transformation and OSGi service implementation and
generation. We also highlight the utility of our MySIM middleware on a given use case and evaluate
the efficiency of our prototype.

102

Chapter 4

MySIM Middleware Implementation

[4.1 The MySIM Middleware Architecture| 103
[4.2 MyStudio Use Case| e 105
[4.3 The MySIM Translator Service| 110
[4.4 The MySIM Generator Service|. 113
[4.5 The MySIM QoS Service|l. e 119
[4.6 The MySIM Decision Service| 121
[4.7 The MySIM Builder Service| v i ii v 123
[4.8 The MySIM Registry Service| L L Lo 127
[4.9 MySIM Prototype Performance Evaluation| 131

We present in this chapter the implementation of the MySIM middleware. The middleware
prototype implements the service integration functionalities depicted in chapter 3 of this thesis,
i.e. spontaneous service transformation, spontaneous service composition and spontaneous service
adaptation under an OSGi service platform implementation, the Apache Felix. The reminder of this
chapter is structured as follows. First, we present MySIM middleware architecture and the different
services MySIM interacts with. Then, we present MyStudio use case, upon which we explain the
spontaneous service integration. We first explain the service transformation from OSGi services
to our SERVICE model done by the Translator Service. We explain the spontaneous service
composition and adaptation provided by Generator Service and QoS Service, and the service
implementation and generation of OSGi integrated services provided by the Builder Service.
Finally, the middleware prototype is evaluated and first performances are given.

4.1 The MySIM Middleware Architecture

The MySIM middleware is a combination of one or more of its specific services introduced sec-
tion 3.1.2. These services can be deployed over one device or distributed over several devices in the
environment. We adopt the distributed architecture for our middleware as the centralized one does
not fit for pervasive environments. MySIM middleware can be located on one or several devices, and
can be locally used or remotely accessed by the network (cf. figure .

103

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

MySIM MySIM

Service
Layer

Figure 4.1: Distributed and pervasive environments

Our MySIM is based in the middleware layer (cf. figure [£.2)). It can interact with other services
located in the middleware such as the Repository Service, Discovery Service, and Context
Service. Each device of the environment may host one instance of these services or non at all. We
briefly explain each of these services and our OSGi based implementation for each of them.

Applications Applications " Applications

s i A
J J : v
MySIM Middleware Middleware
(0]
o ; MySIM
£ Context Service Context Service
5 .
§ Repository Service Repository Service Context Service
Discovery Service Discovery Service ! A
A 4
v v '
Networks Fa Networks ; Networks
LA e
Host A Host B Host C

Figure 4.2: Middlewate layer

The Repository Service contains a list of all the services deployed on the device. New services
deployed on the device and thus appearing in the environment need to register to the repository
and to publish their interfaces with their descriptions for a possible use. OSGi specifications
propose the OSGi service registry. The OSGi service registry holds the service registrations. A
service is registered with the service registry under one or more Java interfaces together with
properties. A receipt is provided when a service is registered. The service registry also allows the
update of the service properties and the un-registration of the service. When a MySIM is deployed
on a device, there is no need for a Repository Service as the Registry Service of MySIM
plays also the role of a repository. The Registry Service offers more functionalities than the
Repository Service as it can also monitor integrated service and advice the Decision Service

104

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

of any changes occurring in the environment. MySIM is designed to be independent and fully
operational on any device even if no Repository Service is available.

Context Service interacts with the physical environment and communicates all valuable
information about the context and its changes, to the modules that require these informations,
such as Discovery Service and MySIM. It reposes over an event-based mechanism. OSGi
supports several types of events. The bundle event reports changes in the life cycle of bun-
dles which is the unit of deployment of a service in OSGi. Framework event reports that
the framework is started, start level has changed, packages have been refreshed, or that an
error has been encountered. Service event reports on events holding information about the
registration, modification, or un-registration of a service object. We use the service event to
define when a service is new in the environment (following our definition 56 in section 3.3.1) and
when the service leaves the environment. The MySIM Registry Service actively interacts with
the Context Service and plays the role of a service listener that reacts to these two types of events.

Discovery Service is responsible of finding services depending on their descriptions. This
service interacts actively with the MySIM as services need to be discovered before being integrated.
The Discovery Service we use is based upon OSGi service reference, that provides a reference
to each registered service. It provides access to the service’s properties but not the actual service
object. The service object must be acquired through a bundle’s interface the bundle context. A
service reference object encapsulates the properties and other meta-information (such as semantic
description) about the service object it represents. This meta-information can be queried by a
bundle to assist in the selection of a service that best suits its needs. When a bundle queries the
framework service registry for services, the framework must provide the requesting bundle with
the service reference objects of the requested services, rather than with the services themselves.

In the rest of the chapter, we first begin by describing our MyStudio use case. Based on this
use case we depict the MySIM services: the Translator Service (cf. section 4.3), the Generator
Service (cf. section 4.4), the QoS Service (cf. section 4.5), the Builder Service (cf. section 4.6),
and the Registry Service (cf. section 4.7). Finally, we give performance evaluations of our MySIM
prototype.

4.2 MyStudio Use Case

In the rest of this chapter, we illustrate the diverse key points we would like to explain by a simple
use case. The use case is a small environment, a personal studio, composed of several services. The
services can appear and disappear as devices come and go at any time. Using this use case, we
depict the different aspects of our spontaneous service integration.

The services of MyStudio are showed figure the Webcam service, the Naming service, the
Packaging service, the Storage service, the Printing service, and the Printer service. All these
services are deployed on devices that can appear and disappear at any time.

These services provide the following functionalities:

105

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

_ '\)
® \\ebcam e Naming ® Packaging ® Storage
Service Service Service Service
® Printer @ Storage @ Printing
Service Service Service

Context

Figure 4.3: MyStudio environment

e The Webcam service enables to take a photo via a webcam.

e The Storage service enables to save an image on a device and to copy a file from one place to
another. Two different services offer the same functionality. One implementation is for local
storage, the other one for remote storage via ftp.

e The Naming service executes a naming strategy defined by a user to name his files and
objects.

e the Packaging service jars files and resizes images.
e the Printing service enables the printing of a document.

e the Printer service enables the printing of a document but with different non-functional QoS
properties as the Printing service.

The aim of our prototype implementation is to provide a proof of concept for our MySIM middle-
ware showing how it is capable of spontaneously integrating services and generating new services
and new functionalities in the environment. The new services will publish the same interfaces as
those already available, and propose extended functionalities.

MySIM middleware composes services that are composable and with a resulting service equiva-
lent or almost equivalent to an existing service in the environment. It also adapts the applications
execution to possible services appearance and disappearance by providing to applications equiva-
lent or almost equivalent services. MySIM triggers the spontaneous integration and controls it via
the Decision Service. It combines and matches services via the Generator Service and QoS
Service. It generates and deploys these services via the Builder Service. Finally, it registers
and monitors these new services via the Registry Service.

106

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

OSGi service interfaces

For each service, we list in listings [4.1] its functional interface with its operations signatures.

// Webcam service

public interface cam.interfaces.ifc.WebcamlIfc{
public Image getSnapShot ();

}
// Storage service

public interface cam.interfaces.ifc.Storagelfc {

public void store (Bufferedlmage bimg, String filename);
public void copy(File src, File dst) throws IOException;
public void copy(String src, String dst) throws IOException;
}
// Naming Service

public interface cam.interfaces.ifc.Naminglfc {
public String getNextName(String ID);

}
// Packaging Service

public interface Packaginglfc {
public Boolean jar(String repertoire);
public Image reSize (Image img);

}
// Printing Service

public interface Printinglfc {
public Boolean print(File source);

}

Listing 4.1: MyStudio Service interfaces

For conciseness, we only give the semantic description of the Webcam service. All the other
services are described upon this model. We used and adapted the OWL-S ontology to describe
our OSGi services. The profile defined in OWL-S corresponds the the interface description and the
process to our property describing the implementations of the operations.

<!-- Service description -->

<service:Service rdf:ID="WebcamService">
<service:presents rdf:resource="#WebcamProfile"/>
<service:describedBy rdf:resource="#WebcamProcess"/>
</service:Service>

<!-- Profile description -->

<mind:WebcamService rdf:ID="WebcamProfile">

<service:presentedBy rdf:resource="#WebcamService"/>

<profile:serviceName xml:lang="en">Webcam</profile:serviceName>

<profile:textDescription xml:lang="en">This service takes a photo </profile:textDescription>
<profile:hasOutput rdf:resource="#ImageOutput"/>

</mind:WebcamService>

<!-- Process description -->

<process:AtomicProcess rdf:ID="WebcamProcess">
<service:describes rdf:resource="#WebcamService"/>

107

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

<process:hasOutput rdf:resource="#ImageOutput"/>

</process:AtomicProcess>

<process:0utput rdf:ID="ImageOutput">

<process:parameterType rdf:datatype="file:///C:/ANIS/webcamDemo/semantic/Diversconcepts.owl">
file:///C:/ANIS/webcamDemo/semantic/Diversconcepts.owl#Image</process:parameterType>
<rdfs:label>image</rdfs:label>

</process:0utput>

OSGi services implementation properties

The services interfaces properties as registered in the Service Registry under the follow-
ing properties defined listing A simple occurrence of “Service” means that the service is
atomic, the number of occurrences of Service indicates the services composed within the registered
implementations. All our service are atomic.

// Webcam service

props.put(”service” , ”WebcamService”);

context.registerService (

cam.interfaces.ifc.Webcamlfc. class.getName(), jmstudio, props);

}
// Storage service wvia Fitp
props.put(”service”, ”StorageFtpService”);

context.registerService (
cam.interfaces.ifc.Storagelfc.class.getName(), serv, props);
}
// Storage Service

props.put(”service”, ”StorageLocalService”);
context.registerService (
cam.interfaces.ifc.Storagelfc.class.getName(), serv, props);

}
// Naming Service
props.put(”service”, ”"NamingService”);

context.registerService (
cam.interfaces.ifc.Naminglfc.class.getName(), serv, props);
}
// Packaging Service

props.put(”service”, "PackagingService”);
context.registerService (

cam. interfaces.ifc.Packaginglfc.class.getName(), serv, props);

}
// Printing Service
props.put(”service”, ”PrintingService”);

context.registerService (
cam.interfaces.ifc.Printinglfc.class.getName(), serv, props);

}

Listing 4.2: MyStudio Service properties

The property describes the interface implementation and specifies whether this implementation
is atomic or integrated (resulting from a spontaneous composition). To execute a service, the
framework can choose services’ interfaces considering the property they publish. If no property
is specified MySIM will randomly choose a service’ interface implementation. Two services are
considered by users/applications to be the same if they have the same functional interfaces. They

108

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

indeed provide, externally, the same functionalities. The two storage services are considered
to be the same by users. The implementations of these services is kept transparent from the
users/applications. Two services are considered by the run-time framework to be the same, if they
have not only the same interface but especially the same property. Two services publishing the
same interface but under different properties are considered by the framework to be different. The
properties describe the implementation of the functional interface and different implementations
mean different services. For the run-time framework, the two storage interface are registered
under two different properties StorageFtpService and StorageLocalService and considered as
two different services.

OSGi services non-functional QoS properties

The non-functional QoS are modeled in our Java code as assertions for the quantitative
and qualitative non-functional QoS properties. We use asserts for defining preconditions or what
must be true when an operation is invoked, postconditions or what must remain true after an
operation completes successfully and invariants what must be true about each instance from the
beginning till the end of the execution. As defined in our model, some non-functional properties
are more related to parameters inputs, others to the outputs and some to the operations in
general. Considering the type of these properties and to what they are related, they are coded
as preconditions, postconditions, and invariants assertions. Later, we would like to use OWL-S
preconditions and postconditions to represent the non-functional properties. At this stage of our
prototype implementation, QoS management is only done in the Java code as assertions over
predefined variables defining the non-functional properties to study.

109

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

storage

store copy
NpQL={<access, « Wireless »>} NpQL={<access, « Wireless »>}
NpQN={<size, 100MB, '<' >} NpQN={<size, 100MB, '<' >}
Printer Printing
print print

NpQL={<access, «Bluetooth»>} NpQL={<access, «Bluetooth»>}

NpQN={<nbPage, 10, ">' >, <price, 2, '< >} PO bR, G0 ™2 e, U =)

Webcam

getSnapShot
NpQL={<access, «Wifi»>}

NpQN={<size, 0.5MB, '<' >, <qualityCoefficient, 1.0, '>' >}

Packaging
reSize jar
NpQL={<access, «Wireless»>} NpQL={<access, «Wifi»>}
NpQN={<size, 1MB, '<' >, <qualityCoefficient, 1.0, '>' >} NpQN={<size, 100MB, '<' > >}

Figure 4.4: Services non-functional QoS properties

4.3 The MySIM Translator Service

In this section, we detail the Translator Service (cf. figure of our MySIM middleware. The
chosen service technology is the OSGi service model developed under Java using the Felix platform.
This choice of Java was motivated by its portability and its capability to provide a strong separation
between the APIs and their implementations. This separation reflects the one we made in our
SERVICE model between the interfaces and their implementations. OSGi [Alliance 2005] was
chosen for its facility to provide the Inversion Of Control (IOC) [Loritsch 2001]. OSGi simplifies
the development, deployment and management of services by decoupling the service’s specification
from its implementation.

We begin by introducing the OSGi technology with its service layer. Then, we explain our
mapping rule, that map from the OSGi service model to our SERVICE model.

OSGi service layer

The OSGi specifications define a standardized, component-oriented, computing environment
for networked services. Adding an OSGi service platform to a networked device (embedded as well
as servers), adds the capability to manage the life cycle of the software components in the device
from anywhere in the network. In OSGi, applications are in the form of bundles, i.e. Jar archives

110

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

SERVICE
Model
Translator Generator
—»

Generator
Service

Evaluator Builder
—

QoS Builder
Service Service

OSGi
Services

OSGi >
Services Translator
Service

Decision Registry
Service

Service

MySIM

Figure 4.5: Translator Service

containing Java classes, native code, various resources files and so-called meta-data. OSGi proposes
a service layer. An OSGi service is a Java interface, provided by a bundle (unit of deployment
detailed in the next section) and registered to a repository. An OSGi service can be implemented
in different ways, and can have several implementations for a same interface. When a particular
service is required, the OSGi repository returns the list of all the available implementations. The
bundle that required the service can then choose which implementation to use.

The OSGi service model is a publish, find and bind model. A service is a normal Java object
that is registered under one or more Java interfaces with the service registry. Bundles can register
services, search for them, or receive notifications when their registration state changes.

In the OSGi Service Platform, bundles are built around a set of cooperating services available
from a shared service registry. Such an OSGi service is defined semantically by its service interface
and implemented as a service object. The service interface should be specified with as few imple-
mentation details as possible. The service object is owned by, and runs within, a bundle. This
bundle must register the service object with the Framework service registry so that the service’s
functionality is available to other bundles under control of the Framework.

The OSGi service layer is composed of the following parts:

e Service interfaces specify the service public methods.
e Service references encapsulate properties and meta data information about the service.
e Service properties associate a key/value argument to each registered interface.

e Bundle is the unit of deployment and provides the service implementations.
Mapping OSGi services into the SERVICE model

Mapping the OSGi specification to our generic SERVICE model is relatively easy (cf. fig-
ure and is done as follows:

111

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Senice - 05Gi Protocal

technology @ Java/OS&i
invacation @ RMI

required

Bundle -d1 ‘ : provided

requireg

0OSGi, java

0%53i Bundle: Implementations
05i Interface:Interface

name : string

1 1.7 Quantitative property
1
B name : string
- } numericWalue : float
A 1.7

0% Property: Functional property

053] Referance: Mon functional property

05Gi Method: Operation

o Qualitative properhy
property g : .

. ‘ 1 ‘ 1 name : =tring

\ interface 0.1
_ _ O5&i return: Output 1
055G method name; Concept OS5 parameter: Input
i i type : zlass

name : string name : string

type : clazs

reference

4

1 1

T O5&i Reference: SemanticOntologyDescription

Figure 4.6: Mapping OSGi service to SERVICE model

Service interfaces in OSGi corresponds to the functional interface I fc of our SERVICE model.
If in OSGi a service can publish multiple interfaces, it will be mapped to our SERVICE model
as different services, as a service correspond to one functional interface. The OSGi methods
are the operations Op of the service, the OSGi parameters of the method the inputs In, and
the result returned by the methods the set of outputs Out. The name of the OSGi method
through which the method is called is the concept cpt part of the operations Op.

Service references in OSGi are the semantic description of the operations semantic and the
non-functional QoS properties Np qualitative or quantitative. These functional and non-
functional descriptions of a service provide meta-data information about a service.

Service properties in OSGi are the functional properties associated to the operations im-
plementations Pr. Interface implementations in OSGi are thus bound to a property that
describes the implementations. When registering, a service can associate to its interface the
property it wants describing the implementations of this interface.

OSGi Bundles are the implementations of the service operations I'mpl.

When mapping to the SERVICE model, the protocol of interaction of a service is specified as
being OSGi based, Java language and using RMI procedure calls for remote access.

112

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

All the services of MyStudio are implemented as OSGi services. Each service is deployed by a
bundle containing an activator, manifest, interface classes and the corresponding implementations.
The semantic description of the services operations are described using OWL-S, and are considered
as the meta-data provided in the property of the service.

Our Translator Service maps the OSGi services into the SERVICE model and provides
these services to the Generator Service and QoS Service for spontaneous service composition
and adaptation. For now, this mapping is done manually and will be automated in later versions

of our prototype.

4.4 'The MySIM Generator Service

The MySIM Generator Service (cf. figure is responsible of the syntactic and semantic match-
ing of the functional interfaces of services in order to compose or adapt services. In the following,
we explain our spontaneous service composition and adaptation, and how the Generator Service
matches services and proposes functional composition and functional equivalences that are trans-
parent for users and applications.

Service
Model

Translator Generator ;
OSGi . Evaluator . Builder Intggsrétied
Services Generator QoS Builder Services
Service Service Service m
Decision Registry
Service Service

MySIM

Figure 4.7: Generator Service

The MySIM Spontaneous Service Composition

We have defined our composition as a service sequence process which mean that the output
of an operation is used an an input of another one. In our composition model, services are
combined with each other based on the conformance of their signatures operation syntactic and/or
semantic matching. For a composition to be spontaneous, the resulting services need to be
equivalent or almost equivalent to an available service in the environment in terms of its functional
interface.

The Generator Service lists all the operations of the environment and first proceed to a
syntactic matching over their types in order to return all the syntactic possible compositions, that
are equivalent to a service of the environment (listing . The matching is done based on a type

marching.

113

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

// All operations of the environment
Method [] Op = getAllOperations(context);
// Search for composable services
for (int i=0; i<Op.length; i++){
for (int j=0; j<Op.length; j++){
bool= isSyntacticComposable(Op[i], Op[j]);
// Composable services
if (bool=true){
composeOp = Compose(Op[i], Op[j]);
for (int 1=0; 1<Op.length; i++){
boolea = isSyntacticEquivalent (Op[k], Op[l]);
// Equivalent services
if (boolean=true){
//pass the composition to QoS Service}}}}}

Listing 4.3: Spontaneous syntactic service composition

The syntactic matching is done using the introspection provided by the Java language. Java
has a well-developed introspection library. This allows a Java program to take a class and find
all of the methods (including constructors) and to find the parameters and return types of these
methods. By this way, our syntactic matching done by the Generator Service is capable of
retrieving all the operations of services, accessing their inputs and outputs types and checking all
possible compatibilities.

EXAMPLE 25 We illustrate the spontaneous service composition using MyStudio use case. First
all the operations of the environment are listed figure [{.8,

f. File s: String
print g Shot
Boolean String Image
src: File dest: File i: Image s: String
copy reSize jar
Image Boolean

src: String dst: String
s: String i: Bufferedimage

copy
store

All operations
Figure 4.8: All operations available in the environment

The spontaneous syntactic service composition returns the following possibilities (cf. figure :
service storage composed with service naming and equivalent to storage, service storage composed
with service packaging equivalent to storage, service webcam composed with service packaging
equivalent to webcam, and service packaging composed with service naming and equivalent to
packaging.

114

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

i: Bufferedimage s: String src: String dst: String src: String dst: String
getNextName
String String String
store copy copy
store copy copy
s: String
src: String dst: String
getNextName getSnapShot
getNextName ~ getNextName
String Image .
String String
ian reSize
. co|
Jjar getSnapShot B
copy
Boolean Image

Figure 4.9: Spontaneous Syntactic service composition

The spontaneous syntactic composition may generate inconsistencies by composing services
that are not really composable. For that a certain control is needed. Once these compositions have
passed through the Generator Service the Decision Service needs by a semantic matching to
control the utility of these syntactic compositions (listing . The semantic control uses the
semantic descriptions of services to verify if the proposed combinations have a meaning or a utility
to applications. The verification is done upon three criteria, the semantic description of inputs, the
semantic descriptions of outputs and the semantic description of the operations concept.

// After the syntactic matching
bool= isSemanticComposable (Op[i], Op[j]);
// Composable services
if (bool=true){
// proceed to the composition}
else {
// inform Decision Service}

Listing 4.4: Semantic control

For a semantic matching the tools we used are based on the Mindswap OWL-S API. OWL-
S API provides a Java API for programmatic access to read, execute and write OWL-S service
descriptions. The API supports to read different versions of OWL-S (OWL-S 1.0, OWL-S 0.9,
DAML-S 0.7) descriptions. The API provides an Execution Engine based on the Pellet reasoner
(listing which is an open-source Java based OWL DL reasoner. It can be used in conjunction
with both Jena and OWL API libraries. It can invoke atomic processes in our case atomic services,
and composite processes, integrated services, that uses control constructs sequence, unordered, and
split. Using this API, the Generator Service extracts the inputs, outputs and concept semantic
value for each operation and compare these values in order to verify a possible compatibility.

115

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

public Matchmaker () {
kb = OWLFactory. createKB ();
kb.setReasoner (” Pellet”);}

Listing 4.5: Pellet reasoner

EXAMPLE 26 After this matching, MySIM decides not to implement the following operations (fig-
ure as they make no sense for applications and users. Indeed, when an application would like
to jar a certain file it does not need to change the naming strategy of the file before jarring it. Same

thing applies when copying files, if the application may want to specify a strategy naming to the file
destination, it surely does not want to do the same to the source file.

i: Bufferedimage s: String src: String dst. String \ src: String dst: String
getNextName \
N
|
String String String
\
\
store copy copy .
\
store copy copyr,
s: String R
AN \ src: String dst: String
N
N
‘getNextName ~ getNextName
\ N
String Image h §
| § String, String
N
2 AN
Jar reSize -
N copy -
jar \\ getSnapShot 7 \\
\ copy
Boolean \ Image

Figure 4.10: Semantic control

If the resources of the environment allow it, the Decision Service ask from the Generator
Service to proceed to a semantic spontaneous composition (listing |4.6)).

// All operations of the environment
Method [] Op = getAllOperations(context);
// Search for composable services
for (int i=0; i<Op.length; i++){
for (int j=0; j<Op.length; i++){
bool= isSemanticComposable(Op[i], Op[j]);
// Composable services
if (bool=true){
composeOp = Compose(Op[i], Op[j]);
for (int 1=0; 1<Op.length; i++){
boolea = isSemanticEquivalent (Op[k], Op[l]);
// Equivalent services
if (boolean=true){
//pass the composition to QoS Service}}}}}

Listing 4.6: Spontaneous semantic service composition

116

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

EXAMPLE 27 Besides the syntactic composition, MySIM proposes a semantic spontaneous composi-
tion between the two services storage and its save operation and packaging service with its resize

operation as described figure [{.11]:
« Image » « location »

reSize

« Image »

store

store

Figure 4.11: Spontaneous semantic service composition

This composition was not detected by the syntactic matching.

The semantic matching is done using the previous introduced execution engine Mindswap OWL-
S API. The combinations of the syntactic and semantic compositions detect all possible transparent
composition services for users.

EXAMPLE 28 Once these new services in the environment (after a successful passage through the
QoS Service), our MySIM middleware will try to find other possible combinations but by verifying
that no combination is done twice. This verification is done by the Decision Service upon the
property of each service. After verification one possible combination is found (cf. figure[{.19).

« Image » s: String
reSize getNextName
« Image » String
store
store

Figure 4.12: Spontaneous semantic service composition

If the service passes the QoS Service successfully, it is implemented and deployed in the en-
vironment by the Butlder Service. This new appearance will not trigger a spontaneous service
composition as no MySIM new services are introduced in the environment. All the interfaces are
bound to already visited properties.

The new MyStudio environment resulting from the spontaneous service integration is depicted

figure LT3,

117

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

7\ B
T £

@® \Webcam e Naming ® Packaging @ Storage service e Storage ® Printer
Service Service Service extended with Service SeniEE
- naming service
® Printing ° gtec;:/aigee ® Evaluator ® Storage service
Service Service extended with
e Vebcam service @ Storage service packaging and
extended with extended with naming services
Context packaging service packaging service

Figure 4.13: Pervasive environment after the spontaneous integration

The MySIM Spontaneous Service Adaptation

The Generator Service is also responsible of providing equivalent and almost equivalent ser-
vices or operations to a specific service upon demand (listing |4.7). It first begins by listing
all the available operations from the environment. Then, it applies syntactic and semantic
matching between operations to construct the sets of syntactic/semantic equivalent operations and
syntactic/semantic almost equivalent operations. The listing provides the implementation for
the operation level. The implementation is similar to the service layer. We just verify that the
services have the same number of operations and that the operations provide equivalence relations.

// All operations of the environment
Method [] Op = getAllOperations (context);
// Defining the set of operations
Method [] SyntacticEquivalent;
Method [] SyntacticAlmostEquivalent;
Method [] SemanticEquivalent;
Method [] SematincAlmostEquivalent ;
// Search for equivalent operations of opi
for (int j=0; j<Op.length; i++){
bool= isSyntacticEquivalent (Opi, Op[j]);
booll = isSyntacticAlmostEquivalent (Opi, Op[j]);
bool2= isSemanticEquivalent (Opi, Op[j]);
bool3 = isSemanticAlmostEquivalent (Opi, Op[j]);
if (bool=true){
SyntacticEquivalent.add(Op[j]);}
if (booll=true){
SyntacticAlmostEquivalent.add(Op[j]);}
if (bool2=true){
SemanticEquivalent.add (Op[j]);}
if (bool3=true){
SemanticAlmostEquivalent.add(Op[j]);}}

Listing 4.7: Service equivalence relations

EXAMPLE 29 In the MyStudio use case the two services printing and printer are syntactic equiv-
alent. All the storage different services are syntactic equivalent as they publish the same interface.
After the spontaneous service composition, the MyStudio is extended with syntactic equivalent ser-
vices as new implementations of storage and webcam interfaces are provided.

118

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

If the first step to adaptation is by searching for functionally equivalent services (syntactically
or semantically), a second important step is done upon a selection based on non-functional QoS
properties and is explained in the next section.

4.5 The MySIM QoS Service

The MySIM QoS Service (cf. figure is responsible of the non-functional QoS properties related
to service composition and adaptation. In a composition it verifies, whether the non-functional
properties are compatible for a possible combinations. In an adaptation it calculates the QoSgegree
upon the provided sets of equivalent services from the Generator Service. Based on the value of
this function, the adaptation is optimized.

Service
Model

Translator Generator ;
cEa . Evaluator . Builder Intg%réﬁed
Services Generator QoS Builder Services
Service Service Service

Decision Registry
Service Service

MySIM

Figure 4.14: QoS Service

The MySIM Spontaneous Service Composition

Concerning the non-functional QoS properties, as for now they are considered as variables
instantiated by the operations, a simple matching between their values determines whether the
resulting service composition holds or not. Later on we would like to integrate the non-functional
QoS properties into the OWL-S descriptions and provides a more advanced matching between
these values.

When composing two services, the QoS Service verifies that the non-functional properties re-
lated to the input and output parameters being combined are compatible. For now, as our properties
are variables defined by the operations, a simple matching is sufficient to detect inconsistencies.

QoS Service uses the isQoSCompatible() between two tuples of non-functional properties
to verify if they can be combined together (cf. listing [4.9)). First it verifies that the two non
functional properties correspond to the same property by analyzing the name. Then, depending on
the operator, the npt input non-functional property needs to verify the npj value of the output.

119

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

// two tuples npi, npj
namei = getName(npi);
namej = getName (npj);
valuei = getValue(npi);
valuej = getValue(npj);
operator = getOperator(npi);
// testing if the same mame
if (namei=namej){
if (operator="<’){
bool = (valuej < valuei);}
else {bool = (valuej > valuei);}
return bool;}

Listing 4.8: Function isQoSCompatible for quantitative properties

For qualitative non-functional properties, the concept matching between the values of the tuples
is used based on the OWL-S API introduced earlier.

// two tuples npi, npj

namei = getName(npi);
namej = getName (npj);
valuei = getValue(npi);
valuej = getValue(npj);

// testing if the same name

if (namei=namej){
bool = (isConceptMatch(valuei, valuej));}
return bool;

Listing 4.9: Function isQoSCompatible for qualitative properties

The isConceptMatch() function returns true if the values of the concept matching between the
two entities is Fxact or Plugln.

When the Generator Service passes the possible combinations of services to the QoS
Service, the Decision Service specifies to this latter on which non-functional QoS properties
to focus. Indeed, not all the non-functional properties need to be verified, but especially those of
the parameters to combine (input and output). If the role of the QoS degree is rather limited to a
matching in a composition, it is much more important in an adaptation as explained later.

The MySIM Spontaneous Service Adaptation

For service adaptation, the QoS Service receives the set of equivalent or almost equivalent
services (syntactically, semantically) from the Generator Service, and will have the task to sort
these sets using the QoS degree function introduced in chapter 3.

We consider an operation opi upon which we would like to find the closest equivalent operations
in terms of non-functional QoS properties. opi can be an operation belonging to a service that has
disappeared, or have non-functional properties representing what an application would like to have.

Listing provides a general view of the implementation that allows to sort the sets provided
by the Generator Service according to their non-functional properties.

120

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

// All operations of the environment
Method [] Op = getAllOperations(context);
// set of operations provided by the Generator Service
Method [] SyntacticEquivalent;
Method [] SyntacticAlmostEquivalent;
Method [] SemanticEquivalent;
Method [] SematincAlmostEquivalent;
// Sorting the set following the QoS degree function
// using Arrays.sort() function
for (int j=0; j<SyntacticEquivalent.length; i++){
QoS(Opi, Op[j]);
QoSort (Op[j], SyntacticEquivalent);}

for (int j=0; j<SyntacticAlmostEquivalent.length; i+4++4){
QoS (Opi, Op[jl);
QoSort (Op[j], SyntacticAlmostEquivalent);}

for (int j=0; j<SemanticEquivalent.length; i++){
QoS (Opi, Op[j]);
QoSort (Op[j], SemanticEquivalent);}

for (int j=0; j<SemanticAlmostEquivalent.length; i+4++){
QoS(Opi, Op[j]);
QoSort (Op[j], SemanticAlmostEquivalent);}

Listing 4.10: QoS degree sorting

The QoS () operation (cf. listing implements the QQ0Sgcgree defined chapter 3. It calculates
the degree of equivalence between the non-functional properties of the operations based on the
z-score values for quantitative properties and on concept matching for qualitative one. For each
quantitative non-functional property, after a calculation of the mean and standard deviation, QoS ()
provides the z-score followed by the 1 values for each operations. Once these values known, the
QoS () operation affect values to wi by querying the Decision Service. The Decision Service
can obtain this information from the applications profiles. For now, QoS() function gives all the
wi the same value.

The QoSort () function sorts the operations of a set using the result of the QoS () function. The
first element is the one that it QoS function provides the closest value to zero.

Once these sets sorted, the Registry Service can automatically choose a service to replace
another one. It will be insured that the service it chooses is the best one for the replacement.
At each appearance or disappearance of services, and before launching the spontaneous service
adaptation, the QoS degree will be re-computed following the new available services and these sets
will need to be re-sorted for the adaptation to be context-aware.

4.6 The MySIM Decision Service

The Decision Service (cf. figure is the central service of the MySIM middleware, as it
controls the events that can trigger a spontaneous composition and especially stop it. Indeed, the
Generator Service matches services upon their functional interfaces, and as these interfaces are
invariant in the environment, it will over and over finds the same combinations and requires from

121

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

the Builder Service to generate and implement these compositions.

SERVICE
Model
Translator Generator Evaluator Builder
—
Generator QoS Builder
Service Service Service
Decision Registry
Service Service
MySIM

OSGi
Services

OSGi .
Services

Figure 4.15: Decision Service

We first begin by defining when the spontaneous service composition is launched followed by
an explanation on when it is stopped.

New services in the environment
When a service appears in the environment, the Decision Service needs to ensure that it

is new before launching the spontaneous composition. The provided algorithm in the Decision
Service providing this guarantee is the one implementing the definition 48 of MySIM new service.

// nmame of interface: cam.interfaces.ifc.class.getName()
// property of interface: cam.interfaces.ifc.property
bool = false;

// mewly registered interface

if isNewlInterface (cam.interfaces.ifc.class.getName()) {
return true;}

// already registered interface

else {

// find all service reference avatlable
ServiceReference [] ref = context.getServiceReferences(
cam.interfaces.ifc.class.getName(), ”(service=null)”);
for (i=0, i<ref.length, i4++){

// compare their properties

ref[i]. getProperty (‘‘service’’);

bool = cam.interfaces.ifc.property.equals(ref[i]);}
return bool;

Listing 4.11: MySIM new service

When a service registers in the Registry Service, if it corresponds to a new interface or if it
has new property of already existing service interfaces, the Decision Service asks the Generator
Service to provide all possible spontaneous service compositions.

If the service is not new, and provides already existing interfaces with already existing
properties, no spontaneous service composition is launched.

122

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Spontaneous composition control

If the trigger of a spontaneous composition is when a service appear in the environment,
the stop condition is just before the Builder Service implements a composed service. Once
a valid combination passes through the Generator Service and the QoS Service, and before
arriving to the Builder Service, the Decision Service verifies that the generated property
that would be bound to the new service is new in the environment and that no occurrences of the
same service is noticed. Indeed, two services may be combined more than once, and this would be
definitely seen in the property describing the implementation of the newly composed service.

// mame of interface: cam.interfaces. ifc.class.getName()
// generated property for the interface:

// interface cam.interfaces.ifc.property

bool = false;

// find all service reference available for the same interface
ServiceReference [| ref = context.getServiceReferences (
cam.interfaces.ifc.class.getName(), ”(service=null)”);
for (i=0, i<ref.length, i4++){

// compare their properties

ref[i].getProperty (‘‘service’’);

bool = cam.interfaces.ifc.property.equals(ref[i]);}

if (bool = true) {return true;}

else {

// wverify the no services are combined twice

bool = occurrenceCheck (cam. interfaces.ifc.property)
return bool;}

Listing 4.12: Property control

If this algorithm guarantees the stop of the spontaneous service composition, it has a severe
limitation as it can not allow combining services together in multiple ways. Indeed, two operations
may combine over several parameter inputs and for that the property generation would be the
same even if the implementations are not the same. We are studying how to resolve this limitation
by introducing an index to the property specifying which elements is being composed and by that
extending the possibilities of compositions.

In the future, we would like to provide the Decision Service with means to provide contex-
tual and pervasive strategies to choose the composition technique depending on the environment
characteristics and to efficiently deploy integrated services in the environment.

4.7 The MySIM Builder Service

In this section, we detail the Builder Service (cf. figure of our MySIM middleware. The
Builder Service implements and generates OSGi services for all the composed services provided
by the Generator Service and QoS Service.

We begin by explaining the OSGi bundle which is the unit of deployment of a service in OSGi.
Then, we depict how MySIM Builder Service implements and generates OSGi services based on
this model.

123

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Service
Model

Translator Generator ;
cEa Evaluator . Builder Intg%rgtied
Services Generator QoS Builder Services
Service Service Service Service

Decision Registry
Service Service

MySIM

Figure 4.16: Builder Service

OSGi bunlde layer

A bundle can be installed and uninstalled and an OSGi platform verifies that the necessary
dependencies are all present. A bundle has a particular class, the activator which contains the
code to execute in order to start and stop the application. The bundle is thus a unit of deployment
and of execution. A bundle can depend on other software resources to execute. These resources
can be particular Java packages (containing Java classes), or particular bundles.

MySIM service implementation of the resulting service composition consists in creating new
composed services in the environment. In OSGi, creating the service is done by creating a unit of
deployment, the bundle. An OSGi bundle is comprised of Java classes and other resources which
together can provide functions, services and packages to other bundles. A bundle is distributed as
a JAR file. Bundles can share Java packages among an exporter bundle and an importer bundle in
a well-defined way.

To create a new service that provides the result of a service composition, the Builder Service
need to tackle several points:

unit of deployment: a bundle to deploy the new composed service.

e interface implementation: The Java code that provides the implementation of the service

interfaces.

e needed libraries: all the possible required libraries depending on the employed composition
technique.

e services dependencies: the new service needs to verify the dependencies of the services involved
in the integration.

124

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Implementing and generating OSGi bundles

The Builder Service tackles each point as follows:

unit of deployment: it creates the bundle by creating Java classes of an activator, a manifest
file, and the service interfaces declarations. The activator is Java class in the bundle imple-
menting an interface that is used to start and stop that bundle, and by that the service. The
manifest file is a text file describing the service.

interface implementations: we provide two different techniques for implementing the opera-
tions of an interface, the redirection call to the services that are composed together, done
via method call and RMI, and the replication of a copy of the composed services or their
implementations done via method call to local replicate available in the newly generated jar
bundle.

needed libraries: in case of replication, the implementations of the replicated services are
needed and added to the bundle. The class path to where to find these libraries is specified
in the manifest file.

services dependencies: the new service will have to verify the dependencies of the services
involved in the integration.

Finally all these classes are jarred into one bundle. The bundle is then deployed and started in

the framework. The corresponding Java code is given listing

// creating .java

mtc. createDirectory (strDirectory);

mtc. createManifest (ManifestName);

mtc. createActivator (ActivatorName);

mtc. createInterface (ServiceName);

mtc. createService (ServiceName) ;

// Compilation and generating .class

if (mtc.compilelt(”cam/” + functionalityl + functionality2 4 ”/Activator.java”) &&
mtc. compilelt ("cam/” + functionalityl + functionality2 + ”/” + functionalityl +
functionality2 + 7 .java”)) {

System.out.println (”Running.classes.:\n\n");

// création of the bundle .jar

if (mtc.jar()) {

System.out.println (”jaring._:\n\n”);}

try {
// starting locally the bundle
Comp = context.installBundle(location);

Comp. update ();

Comp. start (); }

catch (Exception ex){}}

else {System.out.println(”errors_in.compilation”);}

Listing 4.13: Service implementation and generation

125

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Unit of deployment

The createManifest() method creates a manifest file that specifies the interface the ser-
vice exports and any dependencies the service may need to import. In case of composition by
replication, the manifest file also indicates the class path where to find the replicates within the
bundle.

The createActivator () method creates the activator class that is used to start and stop the
bundle, and by that the service. It also binds the functional interface implementation of the service
to a functional property and that by registering the service interface at the Registry Service with
this property. The property is automatically generated as described section 3.3.2.2 after a service
composition and reflects the properties of the services taking part in the composition process.

The createInterface() method specifies all the operations of the newly created service. In
our spontaneous service composition model, the new service republish the same interfaces as an
available services in the environment. This method re-creates all these operations signatures in an
interface class. By that the new implemented service publishes the same operations as an already
existing service in the environment.

Implementation code

The createService() method provide the implementations code of the new composed ser-
vice operations. This method specifies the implementation of the interface declaration. This
implementation is the real composition of the services involved in the composition. When
implementing the operations, the Builder Service needs to distinguish between the operations of
the interface that have been composed and the other ones that where not composed. Indeed, when
two services are composed, it does not mean that all their operations have been composed but
only at least one. The new implemented service need to have the same implementations for the
operations that where not composed as the service it is equivalent to, and new implementations for
the composed ones. The createService() is comprised of several methods createOperation()
that create operations by redirecting the calls to one operation or redirecting the calls to chained
operations in case of service composition.

EXAMPLE 30 In figure[{.17 an example is given. The new service spew results from the composition
of the two services s; and sj. The composition result is equivalent to s; and the operations signatures
of Snew are the same as those of s;. The implementations of these operations redirect to those of s; if
no composition is done, and for those where a composition is possible it redirects to the combination
of the two composed operations as shown figure [{.17

The Builder Service implements operations composition via two techniques (cf. table :
redirection call and replication. The redirection call is an RMI call to the services operations
taking part in the composition. If a new service is implemented using this technique it will be
always dependent on the services it composes. If these services disappear, the new service can no
longer execute and need to be stopped by the Registry Service. In the replication service, the

126

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Shew Si
op1 opl..
7 Snew Plsi
2
op: Snow 0p2Si
3
P Snew OPSSi

op1 §

op2 sj

Figure 4.17: Creating the operation implementations of new composed service

new service has a replicate of the services involved in the composition by that way it can continues
to execute even if services disappear. Nevertheless the replicate may become obsolete as no update
mechanisms are provided.

unit of de- | integration | needed li- | services de-
ployment glue braries pendencies
Redirection | Bundle (jar) | Method Call S1, S2
or RMI
Replication | Bundle (jar) | Method Call | S1 bundle, | dependencies
S2 bundle of S1, S2

Table 4.1: Integration techniques for services S1 and S2

Libraries and dependencies

If the employed technique is a composition by replication, the new service needs to have lo-
cal access to a replicate of the services implementations it integrates (cf. table . These
service implementations are jarred within the new bundle. The class path to the replicates will
be specified in the manifest file by the createManifest () method. The new service will have the
same dependencies as the service it composes. These dependencies are specified in the import and
export part of the manifest of the new service.

4.8 The MySIM Registry Service

Registering services This service (cf. figure 4.18]) registers all the newly composed services and
is responsible of providing application with the best possible services responding to their needs.

ExXaAMPLE 31 The new storage service that results from the composition of storage and naming
have the same operation signature and non-functional QoS properties as storage but different
implementations with properties: Pr = {< storageftp,integrated > (< naming, atomic >)} and
Pr = {< storageLocal, integrated > (< naming, atomic >)} (listing [4.14)).

127

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Service
Model

Translator Generator ;
OSGi Evaluator . Builder Intggsrétied
Services T

Translator
Service

MySIM

Generator QoS
Service Service

Decision
Service

Builder
Service

Registry
Service

Figure 4.18: Registry Service

// Storage service wia Fip

props.put(”service”, 7StorageFtpServiceNamingService”);
context.registerService (

cam. interfaces.ifc. Storagelfc.class.getName(), serv, props);
}
// Storage Service

props.put(”service”, ”StorageLocalServiceNamingService”);
context.registerService (

cam. interfaces.ifc. Storagelfc.class.getName(), serv, props);

}

Listing 4.14: Service storage interface new properties

The new storage service that results from the composition of storage and packaging
have the same operation signature but different non-functional QoS properties as storage
with properties: Pr = {< storageftp,integrated > (< packaging,atomic >)} and Pr =
{< storageLocal, integrated > (< packaging, atomic >)} (listing[{.15).

// Storage service wvia Ftp

props.put(”service”, ”"StorageFtpServicePackagingService”);
context.registerService (

cam. interfaces.ifc.Storagelfc.class.getName (), serv, props);
}
// Storage Service

props.put(”service”, ”StorageLocalServicePackagingService”);
context.registerService (

cam. interfaces.ifc.Storagelfc.class.getName (), serv, props);

}

Listing 4.15: Service storage interface new properties

The new webcam service resulting from the composition of webcam service and packaging
service as specified figure keeps its operation signature and non-functional QoS as
they respect both services involved in the composition. The new property is Pr =
{< webcam, integrated > (< packaging, atomic >)} (listing[4.16,

128

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

// Webcam service

props.put(”service”, "WebcamServicePackagingService”);

context. registerService (

cam. interfaces.ifc. Webcamlfc. class.getName (), jmstudio, props);

}
Listing 4.16: Service webcam interface new property
The new storage service that results from the composition of storage
and mnaming and Packaging is attached to the new properties: Pr =

{< storageftp,integrated > (< packaging, atomic >)(< naming, atomic >)} and Pr =
{< storageLocal,integrated > (< packaging, atomic >)(< naming, atomic >)} and registered as

follows (listing [4.17):

// Storage service wvia Ftp

props.put(”service”, ”StorageFtpServicePackagingServiceNamingService”);
context.registerService (

cam. interfaces.ifc.Storagelfc.class.getName (), serv, props);

}
// Storage Service

props.put(”service”, ”StorageLocalServicePackagingServiceNamingService”);
context. registerService (

cam. interfaces.ifc.Storagelfc.class.getName(), serv, props);

}

Listing 4.17: Service storage interface new properties

After the spontaneous service composition, MyStudio new environment still provides the same
services, as it still publishes the same interfaces but it has been extended with several new imple-
mentations for these services interfaces. We can distinguish three main functionalities provided by
the three services storage, webcam and printing having several possible implementations.

The storage service has two atomic implementations allowing to store images and copy files
locally or remotly via ftp. It has also integrated implementations with the naming and packaging
services. This variety of available implementations allows the Decision Service of MySIM to be
able to adapt the application using this functionality to any disappearance that may occurs. If a
storage service is mo longer available, the search for an equivalent service or almost equivalent
one will provide the list of all these storage services with their different implementations and non-
functional QoS properties.

For the webcam service, if two different implementations exist they are completely dependent on
the webcam device. If the hardware is no longer reachable it is difficult to find a replacement unless
another webcam device is available. On the other hand, the implementations are different and the
Decision Service can propose to applications one implementation or the other depending on what
they need. For applications wishing to manipulate small images the service webcam implementation
that is composed with the packaging service fits the most.

For the printing service, an equivalent service is the printer service with different non-
functional QoS properties. The adaptation choice here is not on the functional property as for
the webcam service but on the non-functional QoS properties. Depending on what the application
needs and prefers, the Decision Service chooses the best service that fits its requirements.

129

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Services adaptation

The Registry Service is the one that provides applications with the services they require.
We detail in listing [£.18| how the Registry Service proceeds.

ServiceReference [] refs = context.getServiceReferences (
cam.interfaces.ifc.class.getName(), " (service=prop)”);
if (refs != null){

cam. interfaces.ifc ifc =
(cam.interfaces.ifc) context.getService(refs[0]);}
else {
ServiceReference [] ref = context.getServiceReferences(
cam.interfaces.ifc.class.getName(), ”(service=null)”);
if (ref != null){
// applying QoSort on the set of founded services
// profile is the profile of the service required by
//applications andnot found
for (i=0; i<ref.length; i++){
cam. interfaces.ifc ifc[i] =
(cam.interfaces.ifc) context.getService(ref[i]);
sortedS = QoSort(profile, ifc[i]);}
// Choice of the first service of the set
cam. interfaces.ifc ifc =
(cam.interfaces.ifc.Webcamlfc) context.getService(sortedS[0]);}
else {
// mo services available ask Generator Service to
// search for almost equivalent services, semantic, etc.
// re—sort the sets following the QoS degree

VZARS
i3

Listing 4.18: Service Registry adaptation

The Registry Service begins by searching for the required service with the specified property.
If a service reference is found, the service object is returned to the client.

If no service is found, the Registry Service will try to find other services publishing the same
interfaces but registered under different properties. If many services are found, it asks the QoS
Service to calculate the Q0Sgeg e relating to the application profile specifying the desired values
of non-functional properties and the importance of these properties via wi. Then, the set of services
are sorted following this computing and the Registry Service returns the first service of the set
which corresponds to the best service.

If no services are found, the Decision Service is notified and a search for syntactic and
semantic equivalent and almost equivalence can start by the Generator Service. This is done
upon a syntactic and semantic matching via the Generator Service. If many services are found,
the selection would be done after calculating the Q0Sgcgree 0f these services by the QoS Service.

If no services are found, the application call are redirected to a proxy that awaits the appearance
of an appropriate service to redirect these calls.

130

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

4.9 MySIM Prototype Performance Evaluation

In this section, we evaluate the performance of our MySIM middleware. We begin by evaluating,
our service implementation and generation, depending on the employed techniques. Then, we
evaluate the syntactic and semantic matching upon the functional services interfaces. The QoS
degree function is evaluated depending on the number of services available in the environment.
Our service composition and adaptation are finally evaluated using the MyStudio use case.

OSGi services implementation and generation

Time in seconds

1.231 |

1.199
1.168 —

Composition by Composition by Composition by Techniques
redirection replication both techniques

Memory in Ko
1164 1—

1094 +—
1077 +—

Composition by ~ Composition by Composition by Techniques
redirection replication both techniques

Figure 4.19: Time and memory consumption of two operations composition

The service composition time takes approximatively 1 second to compose two services as
shown figure It is costly in terms of memory as it uses the sun.tools.javac.Main and
sun.tools.jar.Main classes to build services from scratch. The MySIM service composition im-
plements and generates new services in the environment. If this feature is interesting for the
persistence of services in the environment, it is much less interesting in terms of memory consum-
ing than the approaches that compose services on the fly without generating unit of deployment
for these services.

131

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Size of bundles

301

25—

20—

KBytes

Bundle 1 Bundle2 Bundle3 Bundle 4 Bundle 5

Bundle1 and bundle2: bundles that are composed

Bundle3: new composed bundle via redirection

Bundle4: new composed bundle via replication

Bundle 5: new composed bundle redirecting to bundle 1 and replicating bundle2

Figure 4.20: Size of bundles depending on the composition techniques

Depending on the employed technique the size of the generated bundle is different as shown
(cf figure . The replication technique generates less network communications but takes much
more space than the redirection one, on the device where the new service is deployed. Choosing
one or the other technique will have a repercussion on the environment. Indeed, in devices where
no space is available, it would be preferable to compose services by redirection. On devices where
on the contrary the connectivity is unstable but the space is available the replication method
would be preferable.

Syntactic and semantic matching

To evaluate the impact of the syntactic and semantic matching, we evaluated the time exe-
cution and memory consuming for our MyStudio use case but also for a set of 100 services for
services syntactic and semantic matching done by the Generator Service. Figure 4.21] gives time
and memory values for syntactic service matching done by the Generator Service in order to
find all the spontaneous composable services in the environment. The results are those applied to
MyStudio, and to a set of 100 services. The syntactic spontaneous composition takes no time at
all, and can be executed over relatively constraints devices.

132

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Time in millseconds Memory in Kbytes
320 |
220 |
187 +— 116 +
Use case Simulation Use case Simulation
Example over 100 services Example over 100 services
services services

Figure 4.21: Time and memory consumption for syntactic service matching

The semantic matching is much longer than the syntactic one (cf. figure . The OWL-
S API takes about 12 seconds to compare and matches 8 services owl-s descriptions (MyStudio)
and 55 seconds for about 100 services. The pellet matching engine that reads all the owl-s files by
adding them to the reasoner and extracts the inputs, outputs and concepts fields is much slower and
much more memory consumer than as simple syntactic matching based on introspection methods
provided by the Java language. we conclude that the semantic matching using online semantic
reasoning is a very heavy process.

Time in seconds Memory in ko

55 7000 |

Use case Simulation
Example over 100 services
services

Use case Simulation
Example over 100 services
services

Figure 4.22: Time execution for semantic service matching

The use of a syntactic matching combined with a semantic one, gathers the benefits of both
techniques. Indeed, the syntactic matching is quicker and lighter. A semantic verification done
upon the resulting services, is faster than if done from the beginning on all the services of the
environment. But the semantic matching is important when services are provided in different
technologies and for that a more optimized semantic execution engine is needed so that it can
better fit pervasive environments.

133

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Handling the QoS non-functional properties

We begin by examining the time execution and memory consumption of the QoS function
that calculates for a set of non-functional properties the QQ0Sgeqree related to a predefined service
non-functional properties that we wish to replace.

Figure gives the time execution and memory consumption for quantitative non-functional
properties QQ0Sgegree function computing. We suppose that each service has one quantitative non-

functional property.

Time in milliseconds

47

10 50 100 Services

Memory in Ko

45

23 +

10 50 100 Services

Figure 4.23: Time and memory consumption for QoS degree computing

As we can see the computing time is quick and it does not require much memory. For the
qualitative non-functional properties, the concept matching depends on the size of the employed
ontology that contains the corresponding concepts. For now no test were conducted to evaluate
the time of the execution engine depending on the size of the ontology, but first results show that
the time undertaken is much more important than for the quantitative non-functional properties
computing.

Once the concept matched, the computing of the semantic distance takes as much time as the
one for computing the quantitative non-functional properties QoS degree.

The sorting of the services sets provided by the QoS Service is relatively quick as shown

figure .24}

134

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Time in milliseconds

78

31 |

10 50 100 Services

Memory in Ko

87 1—

44+

12 —

10 50 100 Services

Figure 4.24: Time and memory consumption for services QoS sorting

Spontaneous service composition

The spontaneous service composition time depends strongly on the number of services available in
the environment. If the syntactic matching is relatively quick, composing services takes about 1
second for every composition. We can imagine the time needed to compose lots of services. Adding
to this the time to semantically match services, we quickly realize that some compositions may
occur while the services are no longer available, especially if the environment is highly instable in
terms of connectivity.

Our MySIM spontaneous composition needs to be applied to relatively stable environments in
terms of connectivity, with a good time connection average.

135

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

Time in seconds

15

Syntactic matching, Semantic matching,
composition and composition and
service generation service generation

Figure 4.25: Time execution for spontaneous service composition in MyStudio

In the MyStudio use case, the spontaneous syntactic composition time is about 5 seconds, from
the moment the MySIM begins to match service syntactically till the moment it generates and
starts all the new services in the context (after two cycle of spontaneous composition). For this use
case, this time is relatively good, as we suppose devices can stay connected longer than 5 seconds.
If we add a semantic matching, the time goes to 20 seconds because of the cost introduced by the
semantic execution engine (cf. figure .

For environment populated with services, launching a spontaneous composition can be
problematic especially if the number of services to compose is important. The spontaneous service
composition will need to be scalable to these environments. An idea would be to prioritize the
services to compose depending on the connectivity provided by the devices hosting the services.
The Decision Service may begin by composing the services that may disappear, followed by
those providing better connectivity. The QoS Service may be used to find these services by
analyzing the non-functional property related to connectivity if provided, and if not by querying
directly a Context Service to get the information from the devices hosting the services.

Spontaneous service adaptation

The Registry Service registers the services that appear in the environment and unregis-
ters those that disappear. When an application requires a specific service by specifying its
functional interface, the Registry Service searches for the reference of the service by searching
for a specific property. If the application does not provide any property, the Registry Service
will find all the available services in the environment that publish the same interface, and upon
these apply the QoS and QoSort functions.

We calculated the time needed for the Registry Service to find a service based on its property
and if not to return all the available services in the environment. The results showed that for 25

136

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

services in the environment, publishing the same interface, the Registry Service instantly found
these services and that the adaptation time was reduced to the one of the services QoS degree and
services QoS sorting computing defined above.

When a service leaves the environment, the time to adapt to this changes is the time required
to compute and sort the QoS degree of available services publishing the same interfaces. If none is
available, the time of adaptation will be the sum of time needed to syntactically and semantically
find equivalent and almost equivalent services with the time needed to compute and sort the QoS
degree over these services.

When a service appears in the environment, the QoS Service computes the QoS degree of this
services to find if it better suits the applications using equivalent services. If so, the Registry
Service will propose to applications the new service and the adaptation would be done in no time
for the application, as it is a proactive adaptation. For the middleware, the time needed is the time
it takes to compute the QoS degree of services.

These different functionalities of QoS degree computing were tested and evaluated just before
and we can deduce that the only thing that is time and memory consuming in our implementation
are the semantic related aspects due to the chosen execution engine and the time to generate the
new services due to our technique based on sun.tools libraries.

Chapter Conclusion

In this chapter, we presented the current state of our MySIM implementation prototype. For each
service we resume what have been already done and what is currently being developed. The MySIM
project is a private inria gforge project. The Translator Service provides manual rules to map
an OSGi service model into our SERVICE model. Currently we are improving this module by
automating these rules and extending them to other services model for interoperability purposes.
The Generator Service provides all the matching methods to find equivalent, almost equivalent,
and composable services whether syntactically or semantically. For now the syntactic matching
is Java related. We aim to extend this matching to other languages such as C++. The semantic
matching is relatively slow and costly as it relies on an unoptimized execution engine. Improvement
are studied to use lighter engine. The QoS Service is in a preliminary development stage, as
non-functional QoS are considered as variables instantiated by the operations themselves. No
real connection with the context is yet made. Improvement over the prototype are implemented
to describe these properties semantically and to provide services and applications that require
strong respect of the non-functional QoS in order to execute. The Decision Service has an
event-based mechanisms to launch the spontaneous service integration once a new service in the
environment and to control it in order to stop it when needed (property control). We are studying
contextual strategies concerning the spontaneous deployment of the newly integrated services in the
environment [Ayed et al. 2008| Ichiro 2005] and a contextual combination of syntactic and semantic
matching that provide the best performances depending on the nature of the context. The Registry
Service is responsible of registering the services in the environment and providing the applications
with the best service depending on their needs and what is available in the environment.

137

CHAPTER 4. MYSIM MIDDLEWARE IMPLEMENTATION

138

Chapter 5

Conclusion

5.1 Contributions] 139
[.1.1 Unified Vision for the Service Integration| 140
[5.1.2 Functional and Non-Functional QoS Management ot the Service Integration| 140
[>.1.3 Spontaneous Service Integration| 00000 L. 141

[0.2 Perspectives| 142
[>.2.1 Improvement of MySIM Middleware| 142
[5.2.2 Integration Everywhere| oo 144
[5.2.3 From Pervasive Computing to Ambient Intelligence|. 146

5.1 Contributions

Pervasive computing, the successor of mobile computing, offers challenging problems such as the
integration problem. In pervasive environments, functionalities provided by heterogeneous software
and hardware resources need to be integrated transparently toward providing users and applications
means to execute their daily tasks and activities. In heterogeneous environments where functional-
ities are provided and described in different models, technologies and languages, integrating these
functionalities in the environment is a guarantee for applications and users wishing to use these
functionalities in their operations. Indeed, for an entity to be operational in its new environment,
it needs to be integrated to this environment. By this way, it can take full advantages of all the
possibilities offered by the environment it evolves in.

In this thesis, we focus our interest upon the intersection of two major domains, the service-
oriented architectures meeting the pervasive computing, and propose a novel solution to integrate
services in a pervasive environment. Functionalities are described and offered in the form of services.
Integration is defined by the three operations of transformation, composition, and adaptation. The
problem of service integration in pervasive environments is decomposable into the problems of

service transformation, service composition, and service adaptation.

139

CHAPTER 5. CONCLUSION

The main contributions of this thesis are threefold. They arise from the lacks noticed in current
service integration middleware for the pervasive environments. If many middleware dealt with one
or more of our service problems - transformation, composition, adaptation - few proposed a unified
vision for the service integration in pervasive environment, a management of the functional and
non-functional properties of services during the integration, and especially, a spontaneous service
integration based on events affecting the environment rather than explicit demands coming from
the application layer. This thesis contributed to these three aspects affecting the current service
integration middleware.

5.1.1 Unified Vision for the Service Integration

We proposed the SIM model, a Service Integration Middleware model. The SIM model is at a
high-level of abstraction, without considering a particular service technology, language, platform or
algorithm used in the integration process. The SIM is modeled by four modules: the Translator,
the Generator, the Evaluator, and the Builder. As an entry point of the SIM are the services
of different technologies available in the environment. These services are potential targets for
integration. The services are modeled differently as they can be provided from different technology
platforms. At the end point of the SIM are the resulting integrated services (by transformation,
composition, or adaptation). The Translator module is responsible of describing the services
available in the environment, the functionalities requested by the applications and users in a system
comprehensible language, and for that it transforms the diverse existing technologies that are
platform-dependent into one service model independent from the platforms, the SERVICE model.
The Generator provides new functionalities by composing the available services, or searching for
equivalent services for an application adaptation due to the environment changes. It tries to
generate one or several composition or adaptation plans with the services available in the vicinity.
The Evaluator relies on QoS criteria or applications and users profiles to choose the most suitable
and realizable integration plan for a given situation. This selection is done from all the plans
provided by the Generator. The Builder executes the selected integration plans and produces
several implementations corresponding to the required integrated services.

We proved the genericity of the SIM model by showing that the current service integration
middleware, whether the transformational ones, composition ones or adaptation ones can be de-
scribed by at least one of the SIM modules. Based on this model, we proposed MySIM middleware,
a service integration middleware for pervasive environments that does the service transformation,
composition and adaptation. MySIM also deals with the non-functional QoS properties of services
and propose spontaneous service integration adapted to pervasive environments.

5.1.2 Functional and Non-Functional QoS Management of the Service Integra-
tion

The MySIM middleware integrates services based not only on their functional interfaces and op-
erations but also on the non-functional QoS properties they provide or require. For a service
composition, a functional and non-functional compatibility need to be verified in order to combine

140

CHAPTER 5. CONCLUSION

services together. In a service adaptation, replacing one service by another equivalent one at ex-
ecution time need to take the functional and non-functional properties of services into account,
for the replacement to be efficient. We introduced several services relations for equivalence and
composition. These relations between services allowed to define and explain the MySIM spontaneous
service composition and adaptation.

We have first defined a general SERVICE model respecting the service-oriented programming
paradigm and general enough to model the current existing service technologies such as the Web
services or OSGi service specifications. Based in this model, we distinguished between syntactic
and semantic equivalence, functional and non-functional equivalence, and services equivalence and
almost equivalence one. We defined service composition for the functional parts of services and
stipulated the conditions upon their non-functional properties. We also defined syntactic and
semantic composition, as services are not necessarily provided in the same technology languages
and the use of semantics is more than necessary to resolve heterogeneity.

5.1.3 Spontaneous Service Integration

Our last contributions dealt with the spontaneous service integration. Spontaneity is defined vis-
a-vis to users and applications of the application layer. MySIM middleware is capable of integrating
services of the environment without external demands coming from the application layers and upon
specific events on the functionalities of the environment. The particularity of this spontaneous in-
tegration is in the transparency it provides to the application layer. For the users and applications
of this layer, the interfaces that are published remain the same even after spontaneous service in-
tegrations. When a service appears in the environment, MySIM extends the environment with new
implementations corresponding to service composition, transformation, or adaptation between ser-
vices, leaving the services interfaces unchanged. When a service disappears from the environment,
MySIM adapts transparently the applications execution to the available implementations, hiding
from the applications the disappearance of the service.

The spontaneous service integration, is defined using the service equivalence and composition
relations. For a spontaneous service composition, services need to be composable and the resulting
composition equivalent to a service of the environment. By that the invisibility of the integration
for the application layer is respected. A localized spontaneous service composition is provided to
fit more with the pervasive nature of the environment allowing two service to compose and produce
a service that is equivalent or almost equivalent to one of them. For a spontaneous service adap-
tation, it can occur upon a service appearance or disappearance. If the current service adaptation
mechanisms considered adaptation as a mechanism to mask a loss few propose adaptation as a
solution to provide better than what is actually provided. Our service adaptation considers both
cases, and replace services by others that are equivalent or almost equivalent. Special attention
needs to be given to the non-functional QoS during the adaption process. For a spontaneous ser-
vice transformation, transformational rules transform from a technology model to our SERVICE
model and vice versa. This allows specific services to be used by applications provided in different
technology model, or different services from different providers to be composed together.

141

CHAPTER 5. CONCLUSION

5.2 Perspectives

We can distinguish two kinds of perspectives, the short term perspectives which are related to
improving our MySIM middleware, and the long term perspectives which are more related to our
integration problem in pervasive computing.

5.2.1 Improvement of MySIM Middleware

MySIM middleware can be improved and that by tackling several key points. We explain these
points and try to propose alternatives to the encountered problems.

SERVICE Model

We have proposed a SERVICE model that respects the SOA and provides means to do ser-
vice transformation, composition, and adaptation in pervasive environments. This model can
be improved as some limitations raised while defining and implementing our MySIM middleware.
These limitations concern the functional property that is bound to the functional interfaces and
that describes its implementation. While composing services, MySIM used this property to verify
whether two services were already composed and we noticed that the composition description was
not well described in the property. Indeed, if a functional property gives information about the
services that are composed together, it does not specify on which operations they are composed or
even more on which input parameters of these operations. This information is valuable in order
to distinguish between two composed operations but not over the same inputs parameters. One
idea is to extend the property tuple that contains for now a name and a value to contain also
a two dimension vector specifying which operation is being composed in a service and on which
parameter. The matching between properties will take into consideration this new element to
determine whether two implementation properties of two services are equal or not.

Service Transformation

Our MySIM prototype provides a Translator Service that only transforms services imple-
mented following the OSGi specification under Felix platform to our SERVICE model. It also
provides a Builder Service that generates and implements the results of a service composition
from the SERVICE model to the OSGi services over the Felix platform. The Translator
Service needs to be extended with transformational rules that transform from another technology
model such as .Net services to our SERVICE model and vice versa. Another way in providing
interoperability can be by using interoperable middleware such as middleware developed in
Amigo [Georgantas 2005] proposing interoperable mechanisms for services discovery and inter-
action. The Amigo interoperable middleware core implements middleware-layer interoperability
methods so that services of the networked home environment may be discovered and accessed by
the other networked services, and conversely, be independent of the service-oriented middleware
technology the various networked services are implemented upon.

142

CHAPTER 5. CONCLUSION

Service Composition

Our service composition as we propose it, combines service two by two and generates a
new service that can also takes part in another service composition. The Generator Service
as MySIM provides it, compares and matches services two by two, and returns all the possible
spontaneous service composition from the set of available services. The Generator Service is
not able to combine more than two services in one composition cycle. The extension to a number
n, n € N of services is possible, as the condition for the spontaneous service composition remains
the same. The services composition relations need to verify the same conditions as in two by
two service composition on the parameters outputs and inputs of the n chained services. The
non-functional QoS properties of the combined services need to be compatible. Finally, the overall
resulting composition service needs to be equivalent or almost equivalent to a given service in the
environment for respecting the spontaneity of the service composition. A possible future work is
to try and see when can we define spontaneous composition of n services as a k spontaneous two

by two services composition.
Service Adaptation

Our service adaptation takes the functional and non-functional properties of a service into
account when searching for equivalent services for replacement. The adaptation is seen as a
service substitution as in other works such as [Fredj et al. 2008]. One aspect that is not tackled
by our MySIM middleware is the state of a service that disappears while executing. If a service
disappears while executing an application needs, to replace it in a transparent way, MySIM needs
not only to find equivalent services in terms of functional and non-functional QoS properties but
to know from which state to start the execution of the new service, so that the application does
not loose what has been already executed by the previous service. Mechanisms of logging and
checkpoints need to be introduced at the service execution time level to save the state of a service
at runtime. These mechanisms allows our MySIM to keep a trace over the state of services and to
know when they disappear at which state of execution they were. By this way, once new equivalent
services are found, MySIM can specify the state from which the services need to start the exe-
cution, allowing to the applications and users a transparent replacement of the disappeared services.

Service Composition by Replication

The Builder Service provides two ways for composing services, the redirection and repli-
cation of services. The replication we propose do not take into account any changes or evolution
undertaken by the initial services that have been replicated. A service combining two other
services by replication does not care of any evolution affecting the initial services and relies
only on the replicates it has. An interesting issue is to provide a composition technique more
adapted to the pervasive environment and that by proposing a pervasive replication of services.

143

CHAPTER 5. CONCLUSION

These replications need to be aware of any changing affecting the initial services and have
to adapt to these changes. Studies should be conducted to know the costs of these ’copies’
communications and to see whether it is more interesting to dis-integrate and re-integrate
the composed service if changes affect the initial services or just consider the services that have
changed as new services launching by that new spontaneous service composition in the environment.

MySIM Implementation Prototype

The actual developed prototype is more a proof of concept and is available as a private
project on the inria gforge website, and several aspects need special improvements. For the
service transformation, the genericity of our SERVICE model may be proved with another service
model than OSGi. Taking the web services technology for example and showing that with simple
mapping rules, we can pass from the web services model to our SERVICE model is an issue to dig.
The semantic interface matching employed uses an unoptimized matching engine based on owl-s
API. We can improve the matching time and memory consuming by employing techniques as in
PERSE [Mokhtar 2007] that propose efficient semantic service matching using encoding classified
ontologies. If the number of services become very important, the spontaneous service integration
may cause problems in the network communications, as most of the calls between services are
done via the network, but also in the deployment of services as for each composition a bundle
is created and deployed. Considering n the number of available services in the environment, the
spontaneous integration may propose C’,% possible compositions. If n grows, these compositions
will generate a huge number of services and hence bundles on devices. An issue is to propose a
scalable spontaneous integration by proposing pervasive strategies to adapt the spontaneity of
the integration to the resources available in the environment and the quality of the employed
networks. Another issue is to decide where to deploy the newly integrated services. For now
the deployment is done on devices with sufficient resources, but some propositions about letting
the Decision Service spontaneously and contextually decide about where to deploy the newly
integrated services can be studied.

5.2.2 Integration Everywhere

In this thesis, we were interested in the integration in the middleware layer. One of the long
term perspective is to consider the integration not only in the middleware layer but everywhere.
Integration needs to be everywhere in a pervasive environment (cf. figure . Indeed, providing
mechanisms to integrate services is not useful if the infrastructures these software resources rely on
or if the applications that are constructed upon these services do not also consider the problem of
integration.

At the network layer, the integration can be defined as integrating all possible communication
technologies (wired or wireless) into seamless platforms that can communicate regardless the mo-
bility of software and hardware resources. If the devices upon which services are deployed are not
connected, services cannot communicate in order to integrate, compose or simply interact.

At the application layer, the integration is more user centric and allows users through natu-

144

CHAPTER 5. CONCLUSION

Integration
[Integration Application Layer J
[Integration Middleware Layer J
[Integration Network Layer }

Figure 5.1: Integration every where

ral interfaces, such as speech, vision, and touch to interact wherever he is with the computing
infrastructures. Pervasive applications that are user centric are located in the application layer
and constructed from services assemblage. The composition and adaptation defined by MySIM in
the middleware layer are easily mapped and used by applications for composition and adaptation
purposes. Every application publishes a profile that depends strongly on the context and allows
applications to compose and adapt services that compose them depending on the context these
applications evolve in.

A step further is to study a vertical integration related to the three horizontal integration
defined at each layer of the computing paradigm (cf. figure . This integration will tackle the
interfaces between each layer and propose solutions to provide integrated environments to people
going from the network layer to the application one. The ultimate goal is to develop methods
to realize end-to-end Quality of Service as requested by the end-user over multi-domain network
infrastructures in a cost-effective manner. To achieve this goal, both horizontal integration over
multiple domains and vertical integration over the end user, application/middleware and network
layer are researched cf. figure .

2 &
- application and application and
middleware middleware

-

" access network

vertical integration

A
v

horizontal integration

Figure 5.2: Vertical and horizontal integration

145

CHAPTER 5. CONCLUSION

5.2.3 From Pervasive Computing to Ambient Intelligence

Satyanarayanan [Satyanarayanan 2001] identified the effective use of smart spaces, invisibility, and
localized scalability as the challenges that made mobile computing evolves to pervasive computing.
We think that the integration challenge is a first building block among others that make pervasive
computing evolves to what we now call Ambient Intelligence (cf. figure .

Ambient Intelligence

I

Pervasive Computing Integration ~ ? ?

A

Localized = Smart pjgipijity
scalability spaces

Mobile Computing

Figure 5.3: Ambient Computing

Ambient intelligence are environments that are sensitive and responsive to the presence of
people. Devices work in concert to support people in carrying out their everyday life activities
and tasks in an easy and natural way using information and intelligence that is hidden in the
network connecting these devices, in the devices themselves and in the software deployed upon
them. As these devices grow smaller, more connected and more integrated into the environment,
the technology disappears into the surroundings until only the user interface remains perceivable by
users. Our spontaneous integration as defined in this thesis provides a building block in integrating
smartly the available technology around the user. Possible extensions for our work and that go
in the direction of Ambient Intelligence is to take the user into account when we spontaneously
transform, compose, and adapt services. Our model is internally controlled (via well defined syntax
and semantics) and for now users can not modify or re-parametrize the spontaneity to their ease.
One possibility is to redefine the context by taking into account the users and applications profiles
and preferences. For now, MySIM context is constructed around the services that come and leave,
leading to a spontaneous integration sensitive to what is available in term of functionalities but not
necessarily in terms of users real needs.

The other building blocks for this evolution are the anticipation and smartness of the computing
environment. If nowadays pervasive computing offer to user huge possibilities in terms of hardware
or software resources, they very shyly anticipate the user expectations and are not smart enough
to adapt to user demands without constantly interrupting him. The ambient intelligence will find
its sources in the pervasive computing meeting the artificial intelligence.

146

Bibliography

[Alliance 2005] OSGI ALLIANCE, OSGi Service Platform, Core Specification Release 4, Draft, 07
2005.

[Ayed et al. 2008] DHOUHA AYED, CHANTAL TACONET, GUY BERNARD et YOLANDE BERBERS,
< CADeComp: Context-aware deployment of component-based applications >, Journal of
Network and Computer Applications, p. 224-257, vol. 31, n°3, 2008.

[Becker et al. 2004] CHRISTIAN BECKER, MARcCUS HANDTE, GREGOR SCHIELE et KURT
ROTHERMEL, <« PCOM - A Component System for Pervasive Computing >, the 2nd IEEE
Annual Conference on Pervasive Computing and Communications (PERCOM’04), IEEE Com-
puter Society, Washington, DC, USA, mars 2004.

[Bellavista et al. 2003] PAOLO BELLAVISTA, ANTONIO CORRADI, REBECCA MONTANARI et CE-
SARE STEFANELLI, < Context-aware middleware for resource management in the wireless
internet >, IEEFE Transactions on Software Engineering, p. 1086—1099, vol. 29, n°12, 2003.

[Bhagwat et al. 1996] PRAVIN BHAGWAT, SATISH TRIPATHI et CHARLES PERKINS, < Network
Layer Mobility: An Architecture and Survey >, IEEE Personal Communications, p. 54—64,
vol. 3, n°3, 1996.

[Bruneton et al. 2002] ErIC BRUNETON, THIERRY COUPAYE et JEAN-BERNARD STEFANI, < Re-

cursive and Dynamic Software Composition with Sharing >, Seventh International Workshop
on Component-Oriented Programming (WCOP02) at ECOOP 2002, juin 2002, Malaga, Spain.

[Bruneton 2004] ERIC BRUNETON, Developing with Fractal, The ObjectWeb Consortium, France
Telecom (R&D), mars 2004, version 1.0.3.

[Capra et al. 2003] LiciA CAPRA, WOLFGANG EMMERICH et CECILIA MASCOLO, < CARISMA:
Context-Aware Reflective mlddleware System for Mobile Applications >, IEEE Transactions
on Software Engineering, p. 929-945, vol. 29, n°10, 2003.

[Casati et al. 2000] FABIO CAsATI, SKI ILNICKI, L1 JIE JIN, VASUDEV KRISHNAMOORTHY et
MING-CHIEN SHAN, < Adaptive and Dynamic Service Composition in eFlow >, CAiSE ’00:
Proceedings of the 12th International Conference on Advanced Information Systems Engineer-
ing, p. 13-31, Springer-Verlag, London, UK, 2000.

147

BIBLIOGRAPHY

[Chakraborty et al. 2005] DIPANJAN CHAKRABORTY, ANUPAM JOSHI, TiM FININ et YELENA
YESHA, < Service Composition for Mobile Environments >, Journal on Mobile Networking
and Applications, Special Issue on Mobile Services, p. 435-451, vol. 10, n°4, 2005.

[Chan et Chuang 2003] ALVIN T.S. CHAN et S1u-NAM CHUANG, < Mobipads: a reflective mid-
dleware for context-aware mobile computing >, IEEE Transactions on Software Engineering,
p- 1072-85, vol. 29, n°12, 2003.

[Chetan et al. 2005] SHIVA CHETAN, JALAL AL-MUHTADI, ROy CAMPBELL et M.DENNIS MICK-
UNAS, <« Mobile Gaia: A Middleware for Ad-hoc Pervasive Computing >, IEEE Consumer
Communications & Networking Conference (CCNC 2005), Las Vegas, USA, janvier 2005.

[Coalition 2003] THE OWL SERVICES COALITION, OWL-S: Semantic Markup for Web Services,
OWL Services Coalition, 2003, White paper.

[Constantinescu et al. 2004] IoN CONSTANTINESCU, Bol FALTINGS et WALTER BINDER, < Large
Scale, Type-Compatible Service Composition >, ICWS ’04: Proceedings of the IEEE Interna-
tional Conference on Web Services, p. 506, IEEE Computer Society, Washington, DC, USA,
2004.

[Cooperation 2000] MICROSOFT COOPERATION, Understanding UPnP : A White Paper, rapport
technique, UPnP Forum, 2000.

[Coulouris et al. 2001] GEORGE COULOURIS, JEAN DOLLIMORE et TiM KINDBERG, Distributed
Systems Concepts and Design, ADDISON-WESLEY, 2001.

[dCastro et al. 2006] VALERIA DE CASTRO, ESPERANZA MARCOS et MARCOS LOPEZ SANZ,
< A model driven method for service composition modelling: a case study >, Int. J. Web
Engineering and Technology, p. 335-353, vol. 2, n°4, 2006.

[dCastro et al. 2007] VALERIA DE CASTRO, JUAN MANUEL VARA et ESPERANZA MARCOS,
< Model Transformation for Service-Oriented Web Applications Development >, 3rd Inter-
national Workshop on Model-Driven Web Engineering, juillet 2007.

[Debaty et al. 2003] PHILIPPE DEBATY, PATRICK GODDI et ALEX VORBAU, Integrating the physi-
cal world with the web to enable context-enhanced services, rapport technique, Technical report,
Hewlett-Packard, septembre 2003.

[Floch 2006] JACQUELINE FLOCH (éd.), Theory of adaptation, Delivrable D2.2, Mobility and ADap-
tation enAbling Middleware (MADAM), 2006.

[Fox et al. 1996] ARMANDO Fox, STEVEN D. GRIBBLE, ERIC A. BREWER et ELAN AMIR,
< Adapting to Network and Client Variability via On-Demand Dynamic Distillation. >, Sev-
enth International ACM Conference on Architectural Support for Programming Languages and
Operating Systems, Cambridge, Massachusetts, octobre 1996.

148

BIBLIOGRAPHY

[Fredj et al. 2008] MANEL FREDJ, NIKOLAOS GEORGANTAS et VALERIE ISSARNY, < Dynamic
Service Substitution in Service-Oriented Architectures >, IEEE Services 2008-SCC 2008, juillet
2008.

[Frei 2005] ANDREAS RALPH FREI, Jadabs - An Adaptive Pervasive Middleware Architecture,
These de doctorat, Swiss Federal Institute Of Technology Zurich, 2005.

[Frénot et al. 2003] STEPHANE FRENOT, ANIS KRICHEN et STEPHANE UBEDA, < Light Support
for Dynamic and Pervasive Services on P2P Networks >, Special Theme: Applications and

Service Platforms for the Mobile User, ERCIM news, n°54, 2003.

[Fujii et Suda 2005] KEITA Fuiil et TATSUYA SUDA, < Semantics-based dynamic service compo-
sition >, IEEE Journal on Selected Areas in Communications, p. 2361— 2372, vol. 23, n°12,
décembre 2005.

[Garlan et al. 2002] DAVID GARLAN, DAN SIEWIOREK, ASIM SMAILAGIC, et PETER STEENKISTE,
< Project Aura: Towards Distraction-Free Pervasive Computing >, IEEE Pervasive Comput-

ing, special issue on “Integrated Pervasive Computing Environments”, p. 22-31, vol. 21, n°2,
2002.

[Georgantas 2005] NIKOLAOS GEORGANTAS (éd.), Detailed Design of the Amigo Middleware Core:

Service Specification, Interoperable Middleware Core, Delivrable D3.1b, IST Amigo project,
2005.

[Gomolski 1997] BARB GOMOLSKI, < Messaging Middleware Initiative Takes a Hit >, Computer-
world, vol. 31, n°39, septembre 1997.

[Gu et al. 2004] Tao Gu, HuNG KENG PUNG et DA QING ZHANG, < A Middleware for Building
Context-Aware Mobile Services >, Proceedings of IEEE Vehicular Technology Conference, Los
Angeles, USA, 2004.

[Hashemian et Mavaddat 2006] SEYYED VAHID HASHEMIAN et FARHAD MAVADDAT, < A Graph-

Based Framework for Composition of Stateless Web Services >, the European Conference on
Web Services (ECOWS’06), IEEE Computer Society, 2006.

[Hoareau et Mahéo 2006] DIDIER HOAREAU et YVES MAHEO, <« Ubiquitous Fractal Compo-
nents >, 5th Fractal Workshop, ECOOP’2006, juillet 2006.

[Ichiro 2005] SATOH ICHIRO, < Dynamic Deployment of Pervasive Services >, Proceedings of the
IEEEFE International Conference on Pervasive Services (ICPS’00), p. 302-311, IEEE Computer
Society, juillet 2005.

[Ishikawa et al. 2005] FUYUKI ISHIKAWA, NOBUKAZU Y OSHIOKA et SHINICHI HONIDEN, < Mobile

agent system for Web service integration in pervasive network >, Syst. Comput. Japan, p. 34-48,
vol. 36, n°11, 2005.

[Iverson 2004] WILL IVERSON, Real Web services, O’Reilly, octobre 2004.

149

BIBLIOGRAPHY

[Juric et al. 2006] MATJAZ JURIC, POORNACHANDRA SARANG et BENNY MATHEW, Business
Process Execution Language for Web Services (2nd edition), PACKT Publishing, 2006.

[Kalasapur et al. 2005] SWAROOP KALASAPUR, MOHAN KUMAR et BEHROOZ SHIRAZI, < Seam-
less service composition (SeSCo) in pervasive environments >, International Multimedia Confer-

ence, Proceedings of the first ACM international workshop on Multimedia service composition,
p. 11-20, ACM Press, 2005.

[Kalasapur et al. 2007] SWAROOP KALASAPUR, MOHAN KUMAR et BEHROOZ SHIRAZI, < Dy-
namic Service Composition in Pervasive Computing >, IEEE Trans. Parallel Distrib. Syst., p.
907-918, vol. 18, n°7, 2007.

[Kistler et Satyanarayanan 1992] JAMES J. KISTLER et MAHADEV SATYANARAYANAN, < Discon-
nected Operation in the Coda File System >, ACM Transactions on Computer Systems, février

1992.

[Kjaer 2007] KrISTIAN ELLEBAEK KJAER, < A SURVEY OF CONTEXT-AWARE MIDDLE-
WARE >, 25th IASTED International Multi-Conference, Software Engineering, Springer-
Verlag Berlin Heidelberg, 2007.

[Kumaran 2002] S. ILANGO KUMARAN, JINI Technology An Overview, Prentice Hall PTR, 2002.

[LBM et Satyanarayanan 1995 MARIA R. EBLING LiLy B. MUMMERT et MAHADEV SATYA-
NARAYANAN, < Exploiting Weak Connectivity for Mobile File Access >, the 15th ACM Sym-
posium on Operating Systems Principles, Copper Mountain Resort, USA, décembre 1995.

[Le Mouél et al. 2002] FREDERIC LE MOUEL, FRANGOISE ANDRE et MARIA-TERESA SEGARRA,
< AeDEn: An Adaptive Framework for Dynamic Distribution over Mobile Environments >,
Annales des Télécommunications, p. 1124-1148, vol. 57, n°11-12, novembre-décembre 2002.

[Loritsch 2001] BERIN LORITSCH, Developing With Apache Avalon, rapport technique, Apache
Software Foundation, 2001.

[Medjahed et al. 2003] BRAHIM MEDJAHED, ATHMAN BOUGUETTAYA et AHMED K. ELMA-
GARMID, <« Composing Web services on the Semantic Web >, The VLDB Journal, p. 333-351,
vol. 12(4), 2003.

[Milanovic 2006] NIKOLA MILANOVIC, Contract-based Web Service Composition, These de doc-
torat, University of Berlin, 2006.

[MIT. Project Oxygen 2007] MIT. PROJECT OXYGEN, Pervasive, Human-Centered Computing,
Website: http://oxygen.lcs.mit.edu/, 2007.

[Mokhtar 2007] SONIA BEN MOKHTAR, Semantic Middleware for Service-Oriented Pervasive Com-
puting, These de doctorat, University of Paris 6, 2007.

150

BIBLIOGRAPHY

[Mukerji et Miller 2003] J1SHNU MUKERJI et JOAQUIN MILLER, Technical Guide to Model Driven
Architecture: The MDA Guide v1.0.1, rapport technique, OMG’s Architecture Board, juin
2003.

[Mullender 1993] SAPE MULLENDER, Distributed Systems, ADDISON-WESLEY, 1993.

[Munoz et al. 2004] JAVIER MUNOZz, VICENTE PELECHANO et J.FONS, < Model Driven Devel-
opment of Pervasive Systems >, International Workshop on Model-Based Methodologies for

Pervasive and Embedded Software (MOMPES), p. 3-14, 2004.

[Myerson 2002] JUDITH M. MYERSON, The Complete Book of Middleware, AUERBACH Publi-
cations, 2002.

[Pagels 2005] MANAGER MICHAEL PAGELS, The DARPA Agent Markup Language,
http://www.daml.org/, 2005.

[Paolucci et al. 2002] MAssiMO Paorucct, TAKAHIRO KAWAMURA, TERRY R. PAYNE et KATIA
SYCARA, < Semantic matching of Web Services capabilities >, Lecture Notes in Computer
Science, 2002.

[Pellegrini et Riveill 2003] MARIE-CLAUDE PELLEGRINI et MICHEL RIVEILL, < Component man-

agement in a dynamic architecture >, Special issue of The Journal of Supercomputing, p.
151-159, vol. 24, n°2, février 2003.

[Ponnekanti et Fox 2002] SHANKAR R. PONNEKANTI et ARMANDO FoX, <« SWORD: A developer
toolkit for web service composition >, 11th World Wide Web Conference, 2002, Honolulu,
USA.

[Puder et al. 2005] ARNO PUDER, KAY ROMER et FRANK PILHOFER, Distributed Systems Archi-
tecture: A Middleware Approach, ELSEVIER, 2005.

[Ranganathan et al. 2004] ANAND RANGANATHAN, JALAL AL-MUHTADI, SHIVA CHETAN, ROY
CAMPBELL et M. DENNIS MICKUNAS, < Middlewhere: A middleware for location awareness in
ubiquitous computing applications >, International Middleware Conference (Middleware 2003),
p. 397-416, Springer-Verlag Berlin Heidelberg, 2004.

[Rao et Su 2004] JINGHAI RAO et XIAOMENG SuU, < A Survey of Automated Web Service Com-

position Methods >, the First International Workshop on Semantic Web Services and Web
Process Composition, SWSWPC, 2004.

[Raverdy et al. 2006] PIERRE-GUILLAUME RAVERDY, VALERIE ISSARNY, RAFIK CHIBOUT et
AcNES DE LA CHAPELLE, < A multi-protocol approach to service discovery and access in
pervasive environments >, MOBIQUITOUS - The 3rd Annual International Conference on
Mobile and Ubiquitous Systems: Networks and Services, 2006.

151

BIBLIOGRAPHY

[Roman et Campbell 2003] MANUEL ROMAN et Roy H. CAMPBELL, < A Middleware-Based Ap-
plication Framework for Active Space Applications >, ACM/IFIP/USENIX International Mid-
dleware Conference (Middleware 2003), p. 997-1013, Springer-Verlag Berlin Heidelberg, 2003.

[Royer et al. 1999] EL1ZABETH M. ROYER, SATISH TRIPATHI et CHAI-KEONG TOH, < A Re-
view of Current Routing Protocols for Ad Hoc Mobile Wireless Networks >, IEEE Personal
Communications, p. 46-55, vol. 6, n°2, 1999.

[Satyanarayanan et al. 1994] MAHADEV SATYANARAYANAN, BRIAN NOBLE, PUNEET KUMAR et
MORGAN PRICE, < Application-aware adaptation for mobile computing >, the 6th workshop on
ACM SIGOPS European workshop: Matching operating systems to application needs, Wadern,
Germany, septembre 1994.

[Satyanarayanan 1996] MAHADEV SATYANARAYANAN, < Fundamental Challenges in Mobile Com-
puting >, Proceedings of the ACM Symposium on Principles of Distributed Computing, 1996.

[Satyanarayanan 2001] MAHADEV SATYANARAYANAN, < Pervasive Computing: Vision and Chal-
lenges >, IEEE Personal Communication, aott 2001.

[Sirin et al. 2003] EVREN SIRIN, JAMES HENDLER et BIJAN PARSIA, < Semi-automatic Composi-

tion of Web Services using Semantic Descriptions >, Web Services: Modeling, Architecture and
Infrastructure Workshop, ICEIS, Angers, France, avril 2003.

[Sorensen et al. 2004] CARL-FREDRIK SORENSEN, MAOMAO WU, THIRUNAVUKKARASU SIVAHA-
RAN, GORDON S. BLAIR, PAUL OKANDA, ADRIAN FRIDAY et HECTOR DURAN-LIMON,
< A context-aware middleware for applications in mobile ad hoc environments >, Proceed-
ings of the 2nd workshop on Middleware for pervasive and ad-hoc computing (MPAC’04), p.
107-110, Springer-Verlag Berlin Heidelberg, 2004.

[Terry et al. 1995] DoucrLAs B. TERRY, MARVIN M. THEIMER, KARIN PETERSEN, ALAN J.
DEMERS, MIKE J. SPREITZER et CARL H. HAUSER, <« Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System >, the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain Resort, USA, décembre 1995.

[Vallée et al. 2005] MATHIEU VALLEE, FANO RAMPARANY et LAURENT VERCOUTER, < A Multi-
Agent System for Dynamic Service Composition in Ambient Intelligence Environments >, Doc-
toral Colloquium - Pervasive 2005, Munich, Germany, 2005.

[Vallée et al. 2007] MATHIEU VALLEE, FANO RAMPARANY et LAURENT VERCOUTER, < Using
Device Services and Flexible Composition in Ambient Communication Environments >, Ist

international workshop on requirements and solutions for pervasive softwares infrastructures
(RSPSI), Dublin, Ireland, 2007.

[Walsh 2002] AARON E. WALsH, UDDI, SOAP and WSDL: the web services specification Reference
book, Pearson Education, avril 2002.

152

[Want et al. 1992] Roy WANT, ANDY HOPPER, VERONICA FALCAO et JONATHAN GIBBONS,
< The Active Badge Location System. >, ACM Transactions on Information Systems, janvier
1992.

[Yang et al. 2005] ZHONGHUA YANG, ROBERT GAY, CHUNYAN MIAO, JING-BING ZHANG, ZHIQI
SHEN, LIQUN ZHUANG et HUI MIEN LEE, « Automating integration of manufacturing systems
and services: a semantic Web services approach >, Industrial Electronics Society (IECON) 31st
Annual Conference of IEFE, p. 6, IEEE Conference Proceeding, 2005.

153

	Introduction
	From Mobile to Pervasive Computing
	From RPC Middleware to Service-Oriented Architectures
	Problem Statement: Service Integration
	Thesis Outline

	Overview of the Service Integration Middleware
	Component and Communication Based Middleware
	Component-Based Infrastructure
	Communication-Based Infrastructure

	Service Transformation Middleware
	Perv-ML: Pervasive Modelling Language
	MIDAS: Model drIven methodology for the Development of web InformAtion Systems

	Service Composition Middleware
	PERSE: PERvasive SEmantic-aware Middleware
	SeGSeC: Semantic Graph-based Service Composition
	Broker Approach for Service Composition

	Service Adaptation Middleware
	MADAM: Mobility and ADaptation enAbling Middleware
	CARISMA: Context-Aware Reflective mIddleware System for Mobile Applications
	SOCAM: Service-oriented Context-Aware Middleware

	Classification and Discussion

	Spontaneous Service Integration Middleware
	A Unified Vision for Service Integration Middleware
	A Service Integration Middleware Model: the SIM Model
	An Instantiation of the SIM Model: the MySIM Middleware

	Service Functional and Non-Functional QoS Integration Relations
	Formal Definitions
	Services Equivalence Relations
	Services Composition Relations

	Spontaneous Functional and Non-Functional QoS Service Integration
	Spontaneity Versus Goal-Oriented Service Integration
	Spontaneous Service Composition
	Spontaneous Service Adaptation

	MySIM Middleware Implementation
	The MySIM Middleware Architecture
	MyStudio Use Case
	The MySIM Translator Service
	The MySIM Generator Service
	The MySIM QoS Service
	The MySIM Decision Service
	The MySIM Builder Service
	The MySIM Registry Service
	MySIM Prototype Performance Evaluation

	Conclusion
	Contributions
	Unified Vision for the Service Integration
	Functional and Non-Functional QoS Management of the Service Integration
	Spontaneous Service Integration

	Perspectives
	Improvement of MySIM Middleware
	Integration Everywhere
	From Pervasive Computing to Ambient Intelligence

